
Dutch Delta SystemsDutch Delta Systems

D-Water Quality

Water quality and aquatic ecology modelling suite

User Manual

Open Processes LibraryDRAF
T

DRAF
T

DRAF
T

Open Processes Library

User Manual

Released for:
Delft3D FM Suite 2023
D-HYDRO Suite 2023
SOBEK Suite 3.7
WAQ Suite 2023

Version: 0.99
Revision: 78577

9 April 2024

DRAF
T

Open Processes Library, User Manual

Published and printed by:
Deltares
Boussinesqweg 1
2629 HV Delft
P.O. 177
2600 MH Delft
The Netherlands

telephone: +31 88 335 82 73
e-mail: Information
www: Deltares

For sales contact:
telephone: +31 88 335 81 88
e-mail: Sales
www: Sales & Support

For support contact:
telephone: +31 88 335 81 00
e-mail: Support
www: Sales & Support

Copyright © 2024 Deltares
All rights reserved. No part of this document may be reproduced in any form by print, photo
print, photo copy, microfilm or any other means, without written permission from the publisher:
Deltares.

mailto: info@deltares.nl
https://www.deltares.nl
mailto: software@deltares.nl
https://www.deltares.nl/en/software-and-data
mailto: software.support@deltares.nl
https://www.deltares.nl/en/software-and-data

DRAF
T

Contents

Contents

List of Tables v

List of Figures vii

1 A guide to this manual 1
1.1 Introduction . 1
1.2 Manual version and revisions . 1
1.3 Typographical conventions . 1

2 Introduction to Open PLCT 3
2.1 Background . 3
2.2 Concepts . 6

3 Getting started 11
3.1 Starting Delft3D . 11
3.2 Getting into the OpenPLCT . 11
3.3 Exiting OpenPLCT . 13

4 Tutorial 15
4.1 How to start the developer environment . 15
4.2 Create substance groups . 16
4.3 Create substances . 18
4.4 Create processes . 21
4.5 Setting up the stoichiometry . 27
4.6 Generating computer code . 28
4.7 Make a Windows DLL from your source files 30
4.8 Incorporation of your new process library database 31

4.8.1 Delft3D . 31
4.8.2 SOBEK . 32

4.9 Modify an existing process library . 32
4.9.1 Towards advanced features . 37

5 Advanced programming 39
5.1 Use hydrodynamic results to compute depth 39
5.2 Use hydrodynamic results to compute the velocity 40
5.3 Compute the total water depth . 43
5.4 The feature or segment property . 45
5.5 Settling from the water column towards the bottom 47
5.6 The vertical velocity in 3D models . 48
5.7 Further performance improvement . 49
5.8 Retrieving information from the hydrodynamics 51
5.9 Derived entities . 52

6 Using waqpb export and import tools 53
6.1 Background . 53
6.2 Workflow . 53

References 55

Deltares iii

DRAF
T

Open Processes Library, User Manual

iv Deltares

DRAF
T

List of Tables

List of Tables

5.1 Items that are available to the process library from the system 51

Deltares v

DRAF
T

Open Processes Library, User Manual

vi Deltares

DRAF
T

List of Figures

List of Figures

3.1 Main window of Delft3D-MENU . 11
3.2 Select working directory window to set the directory to for saving files 12
3.3 Open Processes Library (OPL) window to start the OpenPLCT 12
3.4 Open Processes Library Configuration Tool start windows (empty database) . 13

4.1 First PLCT screens with an empty Processes Library 16
4.2 Add groups and Edit Group names window after entering ‘BOD-DO’, before

pressing Add. 17
4.3 The newly created group ‘BOD-DO’ is selected 18
4.4 Edit substances list or select a substance window before our new group . . 18
4.5 Add, Copy or Edit Substances in Group window 19
4.6 Add, Copy or Edit Substances in Group window before BOD5 is added . . . 21
4.7 Edit Substances list or select a substance window with the new substances

selected. 21
4.8 The empty Select Processes window for “Biochemical Oxygen Demand - 5

day” . 22
4.9 Add new and Edit existing Processes window 22
4.10 Edit processes window for process window for the newly created ’BODDe-

cay’ process. 23
4.11 Edit Item window . 24
4.12 Edit Item window with the BOD Decay Rate filled in 25
4.13 Edit Item window with specified flux and Stochi button. 26
4.14 Edit Stochiometry of flux window . 27
4.15 Edit Stochiometry of flux window after stoichiometry has been entered . . . 27
4.16 Edit Process with input items . 28
4.17 Open Processes Library (OPL) window 31
4.18 Specify processes window for process: Decay of Biochemical Oxygen Demand 32
4.19 BOD-DO curve for BOD-Decay. x-axis in km. y-axis BOD (lower graph) and

Oxygen (upper graph). 33
4.20 Adding substance ’Dissolved Oxygen reaeration’ 33
4.21 Edit Processes window for the DO-reaeration process 35
4.22 Source code of the Oxygen Reaeration process 36
4.23 BOD-DO curve for BOD-Decay as before, but now with reaeration 37

5.1 Computer code to compute horizontal velocities 42
5.2 Code to compute the total water depth at all locations 44
5.3 Code modified with lines for computation at active segments only 45
5.4 Sample Fortran file for reaeration of Dissolved Oxygen 46
5.5 Subroutine for temperature dependent BOD Decay with optimisations 50

Deltares vii

DRAF
T

Open Processes Library, User Manual

viii Deltares

DRAF
T

1 A guide to this manual

1.1 Introduction

The Open Processes Library is an extensible collection of subroutines used by the water
quality module in Delft3D and SOBEK. To support this extensibility the tool that gives access
to the contents of the processes library has been adjusted. It now essentially has two modes
of operation:

⋄ Selecting the substances and water quality processes for a particular computation
⋄ Extending the library itself with new substances and processes

It is this latter mode that is the subject of the current document.

1.2 Manual version and revisions

This manual describes the functionality of the Open Processes Library Tool, version 2.99.00
and later versions with minor revisions.

1.3 Typographical conventions

Throughout this manual, the following conventions help you to distinguish between different
styles of text used to describe various aspects of the graphical user interface.

Example
Description

Module
Project

Title of a window or a sub-window are in given in bold.
Sub-windows are displayed in the Module window and
cannot be moved.
Windows can be moved independently from the Mod-
ule window, such as the Visualisation Area window.

Save Item from a menu, title of a push button or the name of
a user interface input field.
Upon selecting this item (click or in some cases double
click with the left mouse button on it) a related action
will be executed; in most cases it will result in displaying
some other (sub-)window.
In case of an input field you are supposed to enter input
data of the required format and in the required domain.

<\tutorial\wave\swan-curvi>
<siu.mdw>

Directory names, filenames, and path names are ex-
pressed between angle brackets, <>. For Linux en-
vironments a forward slash (/) is used instead of the
backward slash (\) for Windows environments.

“27 08 1999” Data to be typed by you into the input fields are dis-
played between double quotes.
Selections of menu items, option boxes etc. are de-
scribed as such: for instance ‘select Save and go to
the next window’.

Deltares 1 of 59

DRAF
T

Open Processes Library, User Manual

Example
Description

delft3d-menu Commands to be typed by you are given in the font
Courier New, 10 points.

In this User manual, user actions are indicated with this
arrow.

[m s−1] [−] Units are given between square brackets when used
next to the formulae. Leaving them out might result
in misinterpretation. Most units will be in SI notation.
[m AD] stands for ’meter Above Datum’, which denotes
a level relative to the vertical reference system in the
model.

2 of 59 Deltares

DRAF
T

2 Introduction to Open PLCT

2.1 Background

As important as grid generation for the hydrodynamicist

For hydrodynamic models the schematisation of a river basin, a lake, an estuary or a sea
is of utmost importance. The model grid; the correct bottom elevation on that grid, external
forcing etc. are the scope of work of the hydrodynamic modeller. The mathematical modelling
software solves the model equations on the prescribed grid, with the prescribed external forc-
ing. For water quality modelling the spatial resolution generally consists of the resolution of
the underlying flow field as generated by the hydrodynamic model itself or of flows on integer
multiples of those hydrodynamic grid cells. For water quality modelling there also is external
forcing in the form of waste loads, meteorology, open boundary concentrations etc. Important
scope of work for the water quality modeller however is the selection of substances and or-
ganisms to be included in the model and the nature of their mutual interactions. This selection
of substances and their mutual interactions is perhaps as important for the water quality mod-
eller as grid generation is for the hydrodynamic modeller. This documentation deals exactly
with this activity of the water quality modeller.

Closed software

Many water quality models consist of a piece of software that computes the spatial concentra-
tion patterns and their evolution over time for a certain set of substances and their interactions.
Users are able to insert waste load information and open boundary conditions and other forc-
ing like meteorology. Furthermore, a number of reaction coefficients, playing a role in the
implemented formulae of interactions, can be modified to calibrate the model behaviour to
available measurement data. If, for a new application, the setting of substances and/or their
interactions need to be changed, the computer code of the water quality model needs to be
changed. If you use closed “as-is” software, you cannot change the computer code and you
must ask the maintainer to do so. The only thing you can furthermore do is fiddle around a bit
with the value of coefficients.

Open software

The first versions of Deltares water quality software, in use from the early ’80s to the early
’90s of the past century had the option of “user programmable water quality”. You wrote a
Fortran subroutine with water quality kinetics. That routine was linked with the main system
and you were able in this way to change your water quality model equations at need. A
number of sample kinetics was delivered to give you a ‘flying start’. We used this procedure
also for our own advisory work from 1983 to 1993. This resulted over time in a number of in-
house programs or subroutines all doing partly the same for common substances and partly
different things for substances and interactions that were specific for the problem at hand. This
procedure was very prone to errors, especially because for a somewhat realistic water quality
model the amount of code for the substances and their interactions could become substantial
and also the amount of different projects and thus different versions of the ‘user-defined code’
was substantial at Deltares.

Deltares 3 of 59

DRAF
T

Open Processes Library, User Manual

Software library approach

That is why Deltares developed in the early ’90s of the past century its processes library.
This is an object oriented approach where each substance is an object. Each “arrow be-
tween substances” in the commonly used flow charts of water quality kinetics (called process)
is an object as well. Finally each steering coefficient or steering function is also an object.
The library includes all substances we could think of being relevant and includes all interac-
tions between the substances we could think of being relevant. At the moment some 223
substances/organisms and fractions of substances (e.g. dissolved and particulate, and also
different algal species) are contained for the standard WAQ module alone (there are also
ECOlogical and CHEMistry extensions). The amount of interactions between the substances,
the “arrows between the boxes” in common water quality graphs, stands now at some 425
processes for the WAQ module alone. The number of coefficients to steer the processes is
several thousands. The 425 processes are computed by some 89 library software functions
(Fortran subroutines). Because several processes for e.g. different heavy metals or different
organic micro-pollutants essentially behave the same, although with different coefficients, they
could be computed by the same library function, fed with different input. This is why the library
functions are re-used on average 425/89 = 4.8 times. Although with careful design probably
even a somewhat higher re-use rate could be obtained, a rate of almost 5 seems not bad at
all. Because you could not add substances or processes Fortran source code to this library
himself, Deltares felt committed to add all user requests free of charge and in due time during
the past decade.

Success through multi-level user interface

This huge amount of substances and organisms and their processes can only be managed
by a multi-level user interface. We made a six levels deep hyperlink user interface. In this user
interface you select substances/organism from the library by switching them on. For all se-
lected substances, you can subsequently switch on processes at will. Most of the coefficients
and steering functions have default values. You select which of these many coefficients and
functions you want to make editable by you rather than to apply these default values. This
was a great success. Since the mid ’90s all Deltares advisory work on water quality was con-
ducted with this process library and the many hundreds of users of the water quality module
that use it world-wide have benefitted from this environment. The most important advantage
was that it ensured error-less functioning.

Error-less because all code and administration on e.g.:

⋄ which coefficients enter where in the system
⋄ are the coefficients spatially constant or heterogeneous
⋄ are the coefficients constant in time or a time function
⋄ how do your results enter into graphs

was taken care of by the system. The only care for you (and that is also your core job, requiring
your expertise and experience) is to:

⋄ select the appropriate combinations of substances/organisms
⋄ select the processes that should be active
⋄ to select the appropriate setting of coefficients for the problem at hand.

You could save your set-up for one project and use it with slightly different selections for
another project, without stumbling around with different versions of source code that may
mutually conflict.

4 of 59 Deltares

DRAF
T

Introduction to Open PLCT

Why is there a need for an open processes library?

Why then at the first decade of this century must we set a next step? Both staff at engineering
firms and institutes who are using our software, and our own staff want now and then new
substances/organisms, processes and coefficients to be introduced in the library. Up to now
they had to contact our software support group who do this fast.

This works fine but some users would prefer to obtain that ability in-house. This is especially
true for the university community. They want to be able to program their own water quality
kinetics. Prof. Joseph Lee of the old and respected place Hong Kong University once said
that students should not only just apply commercial software, but also be able to create the
computer code that represents their scientific topic of study. Since his students are not pro-
gramming their own word processor before they are writing their thesis, we saw possibilities
for the processes library software. It could act as a kind of word processor for the water quality
processes that his students would write during their study. If we could deliver the library empty
and allow the students to program the substances/organisms and processes themselves, they
could focus on the water quality processes without having to deal with a lot of non-relevant
computer programming and data structures and administration. Subsequently, students then
could add their result to the library of the scientific institute as well. In this way their work
would be saved for the institute that automatically obtains a software knowledge base that
steadily increases like the institutes library of normal books. This is quite a different approach
from the sometimes current practice that the computer program of the student is archived as
a dedicated piece of software that becomes obsolete after the student finalises his/her study.

Why is the “Open Processes Library” more than just a computer program

The Open Processes Library can best be compared with a real library with books on the
shelves, one book for each substance, one book for each process, one book for each steering
coefficient or function. Thousands of books that are already contained in the existing pro-
cesses library produced at Deltares. If a new substance, a new process or a new steering
function is needed, you only need to make this ‘new book’, put it on the shelf and insert its
name and reference in the online catalogue. From that time on the existing library is ex-
panded with your substance, process or steering function. Whether you (or others) will use
this functionality in subsequent studies will depend on the study at hand. Sometimes you will,
sometimes you won’t. The feature is however contained in the library and you can select it
(borrow it) any time you want through the multi-level user interface, like all other already exist-
ing features. No software errors are possible once you have added your book to the library. If
your book says that temperature is required for the process in the book, the system will take
care that temperature is there at the right place and in the right form, without any coding from
your side. If your book produces a result in the form of a flux from one organism to another
organism, the system takes care that the flux actually operates on the organisms, without any
further coding from your side.

This manual describes the functioning of the processes library itself to start with a good un-
derstanding. It then shows with a tutorial how to add your own substances/organisms and
processes to an initially empty processes library. Then a number of advanced programming
topics is explained. Finally, in tutorial style, new European Community so called Priority Sub-
stances for the Water Framework Directive will be added to the existing Deltares pre-WFD
version of the library.

With this functionality we feel that we can face the next 10 years of water quality modelling
with confidence. What will come after that period is still to be guessed. The specialist on
artificial intelligence and formula generation Vladan Babovic already expects that probably by
that time the process formulas in the library could be generated by formula generators that

Deltares 5 of 59

DRAF
T

Open Processes Library, User Manual

are using intelligent inferences on the data.

Teamwork

The Deltares team that works on the Processes Library consists of

⋄ Jos van Gils who developed the library approach in the early ‘90s of the past century and
who was the teamleader of the further development of the library since.

⋄ Pascal Boderie who developed the first comprehensive set of process routines.
⋄ Jan van Beek, who developed the whole data structure and administrative programs call-

ing the process routines, is responsible for the whole core simulation interface with the
process routines of which he also developed quite a number himself.

⋄ Arjen Markus, Stef Hummel and Antoon Koster were involved in its user interface that runs
both on MS-Windows and Linux.

⋄ Johannes Smits recently reviewed the whole set of processes and coefficients and ex-
panded the library approach to a layered bottom underneath the water phase.

⋄ Leo Postma saw that the others did a splendid job, was responsible for the ‘opening up’ of
the process library for external users and wrote this manual.

2.2 Concepts

The processes library is an extensible library of water quality components. The following water
quality components are distinguished:

⋄ Substances
These are all constituents where a concentration or density can be computed for by the
water quality model. The concentration/density is computed by the time integration of the
reaction equation (dC/dt = . . .) together with the advection diffusion equation (ADE)
if the substance is carried with the water or without the ADE for substances that are not
carried with the water (e.g. those that lay on the bottom as particulates). Also organisms
(bacteria, algae, filter feeders etc.) are called substances. Also phenomena (e.g. BOD,
salinity, pH) are called substances although they are not in strict chemical or biological
sense. Because the list of available substances in the user interface could become long,
they are divided into substance groups. This is just for the ease of reference and has no
specific further meaning in the computation.

⋄ Processes
These are the water quality kinetics. It is the right-hand side of dC/dt = . . . In flow charts
of water quality models processes generally represent the arrows or fluxes between the
substances. Each process is computed by a tiny computer program, a Fortran subroutine.
Each process has its input coefficients and produces one or more arrows in the flow chart
of water quality kinetics. The arrow itself is called Flux, so the process produces fluxes.
The process may also produce output variables. These variables may be used as input for
other processes. If e.g. mortality of bacteria depends on salinity, but the modelled sub-
stance is chloride, then a process may take chloride and other ions as input and compute
salinity as output that is used again as input for the mortality of bacteria.
Output variables may also be used for analysis purposes. If you e.g. let the process deliver
some intermediate results (like the nutrient limitation factor for algal growth) as output, then
it can be displayed in graphs and statistics just like a normal substance. Several processes
can use the same Fortran subroutine for their computation but with different input, output
and flux variables. If the resuspension and sedimentation of suspended sediment has
to be computed for 3 size fractions of suspended sediments in an identical way but with
different coefficients, they can use the same Fortran subroutine. The same holds for all
those heavy metals that partition in the same way but with different partitioning coefficients
or isotherms.

⋄ Items

6 of 59 Deltares

DRAF
T

Introduction to Open PLCT

These are the input variables for the processes, but also the output variables (that may
be input to other processes). Also the fluxes between substances are ‘items’, but they
are special in the sense that they contain a description of the substances that they affect.
Also the concentrations can appear as items, if they are input to a process. A process may
behave e.g. temperature dependent. temperature can be a substance if it is modelled as
a state variable of the model. It can also act as ordinary input item if it is prescribed from
outside by you. The same items can be input to several different processes (temperature
for instance is an input parameter for many processes). Input items for a process can
have a default value. Per process, however, you can specify whether you want the system
to use this default value or not. If an item is modelled, the system generally automatically
takes the model result as input for all processes that require the item. You can overrule
this by specifying the item externally.
Items can be:

⋄ constant in time and for the whole model area
⋄ a time function that is uniform over the whole model area
⋄ a spatially heterogeneous factor that is constant in time
⋄ a spatially and temporally varying item.

A model result generally is in the last form. You do not need to care. You can use different
approaches for the same item in different studies:

⋄ temperature as a prescribed constant for a short term simulation
⋄ as a prescribed time function for a one year simulation of a coastal zone or river
⋄ temperature modelled with input from solar radiation, cloudiness and humidity.

The system automatically resolves all references.
⋄ Fluxes

A special class of items consists of the fluxes between substances. They have an as-
sociated stoichiometry. That is a table with the name of the substances where they act
upon and the factor with which they act. The nitrification flux e.g. acts with a factor -1.0
on ammoniacal nitrogen and with a factor +1.0 on oxidised nitrogen, but it also acts with a
factor of -4.57 on oxygen. This 4.57 represents the amount of oxygen in gram needed to
nitrify 1 gram of ammoniacal nitrogen to oxidized nitrogen.

What services does the processes library offer you?
⋄ Make the model as large as you specify

You can switch on substances, switch on processes that influence the substances and
you can define which items you want to be editable through the user interface and where
a default value would do for you. You furthermore can specify which items you want
to be added to the output set (the modelled substances are by default members of the
output set, but you can add any other intermediate computational result). Once you have
finished, the model is exactly as large as you have specified, so there is no overhead by
the non-used part of the processes library.

⋄ Administrate all data flows
The system takes care that it acquires all input for the processes, that the processes are
invoked and produce output and fluxes and that the fluxes act between the substances.
You cannot influence this and that is why you also cannot make errors in this respect.
The system automatically takes your modelled substance temperature if you switched it
on. The system also automatically switches on all processes that produce output that is
required as input for the processes that you have switched on yourself manually. At set-up
time the system prompts you already to take action if not all required input for a simulation
is resolved yet.

⋄ Intelligent data administration
The system identifies for all items that you have specified to be editable by you, whether

Deltares 7 of 59

DRAF
T

Open Processes Library, User Manual

they are provided as a constant, as a single time function for the whole area, as a spatially
distributed constant or as a spatially distributed time function.

⋄ Archive of the set-up
The total configuration of your water quality model consists of the choices you made.
This total configuration is saved for archive purposes. This means that you can always
reproduce your selection from a previous study by importing its setting. Your new study
may consist of a slight modification of this setting. You save the new setting under a
different name and both settings remain available for future use.

How do you turn your saved set-up into an actual water quality model?

The saved set-up is imported either in the user interface of the Deltares 1D-2D system SOBEK
or in the Delft3D user interface. In this user interface you will see that all items appear that you
have specified as being ‘user-editable’. In this SOBEK or Delft3D user interface you define
whether you will specify this input as a constant that you enter into the corresponding field
(like is done with parameters for e.g. a sensitivity test).

You may also specify it as a time function (like solar radiation above your model area through-
out the year) or as a spatially distributed function (like the bottom-organic matter content).
Both SOBEK and Delft3D have tools to conveniently make such a spatially distributed func-
tion from e.g. measured data or just by specifying them yourself in a number of points. Finally,
you may specify it as a time-series of spatially distributed fields. In a number of cases the
latter can come from the hydrodynamic model result (water depth, salinity, temperature, bot-
tom shear stress, water velocity etc. if switched on there). In those cases the link with the
hydrodynamic model result is made automatically.

In the user interface you will also see the selected substances as potential output items. Also
all those process input and output items that you clicked on as being available for output
appear as candidate for output in the user interface. In the user interface you specify which
of all these items you want actually be saved into the output file and thus be available for
graphical post-processing. It is very convenient to have spatial graphs and/or animations also
for the nutrient limitation of algal growth or the local bottom shear stress besides that of your
modelled substances.

Finally you can specify online statistics, like averages (moving and total), exceedence fre-
quencies and percentiles of all these variables. Those statistics also appear in normal output
files that can be processed in a standard way by the graphical post-processing tools.

Different levels of users

The afore-mentioned approach distinguishes the following different levels of use:

⋄ The model end-user
Through the SOBEK or Delft3D user interface scenario computations and corresponding
graphics are made by adjusting e.g. wasteloads, boundaries or coefficients for an existing
model through the user interface. This can be done by a technician.

⋄ The modeller
Using the SOBEK or Delft3D productivity tools, a model is set up for a certain area. An
existing saved file with a selected set of substances and processes is imported.

⋄ The model developer
Using the PLCT, Processes Library Configuration Tool, a selection of existing substances
processes and items from the Library is made and saved in a file.

⋄ The water quality/ecological modelling scientist
Using the Open Processes Library and a Fortran compiler, substances, processes and/or

8 of 59 Deltares

DRAF
T

Introduction to Open PLCT

items are added to the existing library.

The last level is the only level that requires computer programming effort and may thus be con-
ducted by a scientist together with a computer programmer. The procedures for this last level
are explained further in Chapter 6. Please be aware that this is for each substance/process a
‘one of’ activity comparable with the purchase of new books for the collection by a real librar-
ian. The borrowing of books from the library is a one level higher activity and the reading of
the borrowed books is done by the top two levels.

It is of course up to the procedures within your organisation whether you want to distinguish
all of these levels by assigning them to different persons or not. If you do all 4 levels yourself,
you will nevertheless recognize these different levels as separate actions to be taken during
your work.

Deltares 9 of 59

DRAF
T

Open Processes Library, User Manual

10 of 59 Deltares

DRAF
T

3 Getting started

3.1 Starting Delft3D

The Delft3D suite is a range of modules that can be run independently of one another. The
main menu of Delft3D provides access to each of the main modules. Delft3D-MENU can be
started either:

⋄ In Microsoft®Windows, select Delft3D in the Programs Menu or click on the Delft3D icon
on the desk-top

⋄ In Linux, type delft3d-menu on the command line.

The main window of Delft3D-MENU is shown in Figure 3.1.

Figure 3.1: Main window of Delft3D-MENU

Whether or not you may use specific Delft3D modules and features depends on the license
file you have (delft3d_<hostid>.lic in your DS_Flex directory).

There are two ways to exit the Delft3D-MENU:

⋄ Click Exit.
⋄ Click the ‘close’ button (×) in the top-right corner of the menu bar.

3.2 Getting into the OpenPLCT

Before continuing with any of the selections, you must select the directory in which you are
going to prepare a scenario:

⋄ Click the Select working directory button, see Figure 3.2 for the window displayed.

A standard file selection window is opened and you can navigate to the required directory.

⋄ Browse to the desired directory, and enter this working directory.
⋄ Confirm your selection by clicking OK.

Remark:
⋄ In case you want to create a new directory, click and specify a name. Enter the new

Deltares 11 of 59

DRAF
T

Open Processes Library, User Manual

Figure 3.2: Select working directory window to set the directory to for saving files

directory and click OK to confirm your selection.

Now we are back in the main water quality menu and we can define new substances and
processes.

To start the OpenPLCT for WAQ (general water quality) press first th button Water Quality
(Figure 3.1, followed by General and Tools and OpenPLCT (now you get a window similar to
Figure 3.3) and Define Input. The OpenPLCT will start, showing three different windows, see
Figure 3.4.

Figure 3.3: Open Processes Library (OPL) window to start the OpenPLCT

To start the OpenPLCT for WAQ (simple algae) a similar path need to be followed.

12 of 59 Deltares

DRAF
T

Getting started

Figure 3.4: Open Processes Library Configuration Tool start windows (empty database)

3.3 Exiting OpenPLCT

To exit the OpenPLCT:

⋄ Click File → Exit.

You will be back in the Open Processes Library (OPL) selection window, see Figure 3.3.

Now, ignore the other options and just:

⋄ Click several times Return to return to the main window of Delft3D-MENU, see Figure 3.1.
⋄ Click Exit.

The window is closed and the control is returned to the desktop or the command line.

This Getting Started session will have given you the general idea of how to access the Open
Processes Library Configuration Tool (OpenPLCT).

Deltares 13 of 59

DRAF
T

Open Processes Library, User Manual

14 of 59 Deltares

DR
AF
T

4 Tutorial

The Open Processes Library is the developer environment of the existing Deltares Processes
Library Configuration Tool PLCT. Every licensed user who is using an existing processes li-
brary (like the library that is delivered together with the Deltares software), uses the Processes
Library Configuration Tool (PLCT) to select substances for modelling, to select processes for
the interactions and to select parameters for user input and user output. It is easier to un-
derstand the developer environment if you already know the functioning of this PLCT. It is
however not mandatory. You can use this tutorial also as a novice user.

In the tutorial two things will be done step by step to illustrate the functioning:

⋄ starting with a fully empty processes library we will set up a complete Streeter-Phelps
BOD set of processes for the library

⋄ starting with the full WAQ license from Deltares, we will add an additional substance that
is considered a priority substance for the European Water Framework Directive and that
was not contained yet in the library at the time of writing the WAQ manual.

4.1 How to start the developer environment

The developer environment is incorporated in the Processes Library Configuration Tool. You
start the PLCT from the SOBEK or Delft3D user interface using the corresponding tool button.
In developer mode, the PLCT takes several extra parameters in a Windows INI-file:

⋄ configuration
The configuration parameter gives the configuration where you start the system with.
Common configurations are:

⋄ ECO - the ecology configuration.
⋄ WAQ - the general water quality configuration.

⋄ application_type
Indicating in which environment the PLCT is running, Delft3D or SOBEK

⋄ nefis_data_file and nefis_definition_file
The configuration tables of the processes library are contained in a database file. These
used to be two files, <proc_def.dat> and <proc_def.def>, but a more recent version of
the underlying library combines these two files into one. If these parameters are missing
the PLCT will prompt you to select them.
If you have an empty processes library, then these files are simply missing. At the prompt
you just push the Cancel button and the PLCT starts with an empty processes library.
Once you have edited things and you save your work in a processes database, your own
processes library, then you can specify this file at the next startup and you can continue
where you have saved the work in the previous session. The file you save is created as a
single file.

⋄ defaulthome
This is the directory containing any selected substances, processes and/or items with
normal use of the PLCT. In general you do not need this directory when you are adding
new items to the library. Usually you will start the PLCT from the SOBEK or Delft3D user
interface at normal use, and then it is set by the respective user interfaces.
Your configuration should match the license file that you have got. If started with an empty
processes library, your configuration will become USER.

Example:

[General]

Deltares 15 of 59

DRAF
T

Open Processes Library, User Manual

configuration = ECO
application_type = Delft3D
mode = Developer

[System]
nefis_data_file=D:\Deltares\Delft3D 4.1.0\win32\waq\default\proc_def.dat
nefis_definition_file=D:\Deltares\Delft3D 4.1.0\win32\waq\default\proc_def.def
algaedb=D:\Deltares\Delft3D 4.1.0\win32\waq\default\bloom.spe
defaulthome=D:\Deltares\Delft3D 4.1.0\win32\waq

4.2 Create substance groups

After start-up the PLCT consists of three windows (Figure 4.1):

1 Messages Window displays messages when errors occur, mostly related to
missing information.

2 Processes
Library Configu-
ration Tool

File managing window for opening and saving files and exiting the
PLCT. The window also gives an overview of the substances se-
lected so far.

3 Select Groups Overview of available substances groups, and entry point to select
substances. Also, entry point to Extra processes

Figure 4.1: First PLCT screens with an empty Processes Library

The menu bar has the following menu bar options (Processes Library Configuration Tool
window):

File New Start a new scenario — clear all input.
Open. . . Open an existing PLCT <∗.0> file.
Save Save the current PLCT <∗.0> file using the previously given

name, or the default name<substate.0>. A substance file<∗.sub>
is saved simultaneously.

Save as. . . Save the current PLCT <∗.0> file and specify its filename. A
substance file <∗.sub> is saved simultaneously.

Exit Exit the PLCT.

16 of 59 Deltares

DRAF
T

Tutorial

Edit Merge Merge the current data with an existing processes library, the new
processes library will be available after saving this session.

Tables Export the data to several <*.cvs> files on the current directory
(Expets).

Help About When clicking About a window will display the current version
number of PLCT

If you press the Edit button a screen opens and you can enter the name of a substance group.
We will enter the name “BOD-DO” (Figure 4.2) , because our first additions to the library will
consist of the classic BOD-DO kinetics by Streeter and Phelps (1925). We press the Add and
Save buttons to create the group.

Figure 4.2: Add groups and Edit Group names window after entering ‘BOD-DO’, before
pressing Add.

The Change button in Figure 4.2 will just change the name of the selected group to the string
that you entered in the edit-field.

The Delete button only deletes the group if it does not contain any substances any more.
So you need to move substances to other groups or delete substances first to make a group
empty, before you can delete the group itself. This procedure for deleting a group is exemplary
for all such actions in the developer environment: this way you avoid accidentally losing data.

Once you press the Save button, the modifications are irreversibly updated into your session.
To save your modifications to disk, you have to select the Files → Save As. . . menu item of
the main window.

Remark:
⋄ It is good practice to save your work some now and again. You can then always start

again from a previous saved state if something goes wrong. Then you can exit the
software and restart it with the intermediately saved database as input. There is no
facility equivalent to an undo button in the developer environment of the PLCT.

After you have added and saved the ‘BOD-DO’ group, it is inserted in the Available Groups
canvas of the Edit groups list or select a group window and you may select the group by
clicking it. Your screen will look like Figure 4.3.

Deltares 17 of 59

DRAF
T

Open Processes Library, User Manual

Figure 4.3: The newly created group ‘BOD-DO’ is selected

4.3 Create substances

If you select the ‘BOD-DO’ group also in the right hand side list of the Edit groups list or
select a group window (Figure 4.3) then the Edit substances list or select a substance
window of Figure 4.4 opens. We want to add substances to the group so we press the Edit
button to edit the substances list. We now see the window of Figure 4.5. Because you use
this window to display, add or edit substances in a substances group, the name of the group
is displayed in the window title, “BOD-DO” in our case.

Figure 4.4: Edit substances list or select a substance window before our new group

18 of 59 Deltares

DRAF
T

Tutorial

Figure 4.5: Add, Copy or Edit Substances in Group window

The window contains a number of input fields:

⋄ The substance name, which can extend to 50 characters and is meant for a meaningful
description. It does not need to be unique, but it is easier if it is. It is displayed in many
windows.

⋄ The unique substance ID, by which each substance is identified, is limited to 10 characters
only and gives little opportunity for a meaningful description. Nevertheless you should try
to make the ID as explanatory as possible. The end-user will see the ID for instance as a
name in the output files.

⋄ The unit is part of the explanatory information. The system does nothing do with the unit.
It is neither parsed nor automatically converted, although features of that type may come
in future. Nevertheless it is important to think over the units carefully.

The WAQ system uses SI-units like meter [m] for lengths and distances. If you want to have
your substances represented by the [mg/l] unit, then you need to realise that this is equivalent
with [g/m3] and you have to release waste loads of the substance in [g/unit of time] to obtain
[mg/l] as concentration unit. This seems trivial, but the concentrations of heavy metals and
organic micropollutants are generally expressed in [µg/l] or [mg/m3]. So here the waste load
needs to be in [mg/unit of time].

More complicated is the common unit for faecal bacteria: MPN/100 ml. If you release MPN
per unit of time, then you get MPN/m3 and that is 104 MPN/100 ml. This means that you have
to divide your waste load by 104 to get the required concentration unit as output.

Errors are easily made in this respect, so a careful check of your settings is advised. As
an exercise you may try to identify how you have to scale your thermal waste load given in
megawatt to produce the substance ‘excess-temperature’ in ◦C in the water1.

For your convenience the unit field is a drop-down box, containing all units that have previously
been defined. This allows you to select one from previously entered substances to avoid

11 megawatt = 1 MW = 106 J/s. 1 calorie heats 1 cm3 of water 1◦C. 1 calorie is 4.19 J. This means that 1 MW
= 106/4.19 [cal/s]. or 1/4.19 [◦C m3/s]. So you divide the number of megawatts by 4.19 to get the load per second
that corresponds with the state variable “temperature” expressed in ◦C.

Deltares 19 of 59

DRAF
T

Open Processes Library, User Manual

typographical differences such as differences in case and/or additional spaces.

The 10 character unit field is in some applications added to the 10 character ID field of a
substance. For those situations it is convenient to distinguish the unit format from the ID by
placing the unit between brackets, e.g. “[g/m3]”.

Remark:
⋄ The check-box Transportable may seem strange. If you realise however that material as

settled on the bottom of your computational element can also be distinguished as a sub-
stance, you realise that not all substances are transported by the water. Transportable
is the default state. If a substance is attached to the bottom or walls, you uncheck this
box and the substance is excluded from the advection-diffusion equation solver, but the
water quality processes still act.

Once you start typing a substance name, ID and unit, the Add button becomes active. You
add the substance to the list by the Add button.

If you select a substance in the list, the fields for name, ID and unit are filled in with the
information of that substance. Now also the Delete button becomes active. The Delete button
deletes a substance. To do so however, all processes associated with that substance should
also be removed. Even then the substance is not fully removed from the system, but it is
converted into an input-item. This input-item can later on be deleted according to the rules for
those items. This very conservative approach is used to avoid accidental loss of data.

You will have noticed that the title of the Add button changed to Copy. That reflects the fact
that you cannot add a substance with the same specification as an existing one, but you can
copy it under a different name. This copy feature is discussed in more detail in Section 5 of
this manual.

If you change the information in name, ID or unit field, the buttons will be labelled Add and
Change, reflecting the fact that you can add a substance with the modified name, ID and unit,
or change the selected substance towards the new values in the fields.

A special situation occurs if you specify a substance-ID using the drop-down list. You can
then select a substance that already exists in another group. If you now press the Add button,
you are asked whether you want to move the substance from the other group to this group. If
you answer “yes”, the substance is moved from the other group to this group. You only need
to specify the ID for that action. All ID’s are case-insensitive, so Oxygen is the same sub-
stance as OXYGEN. It is however good policy to adopt a more or less uniform typographical
convention.

We will insert the substances “Dissolved Oxygen” with ID “DO” and unit “[g/l]” and “Biochem-
ical Oxygen Demand - 5 day” with ID “BOD5” and unit “[g/m3]” in this new group. Before the
Add button is pressed for the last substance, the window may look like Figure 4.6.

Note: that at this point the program does not know whether you want to change the selected
Dissolved Oxygen substance ID and rename it to BOD5, or whether you want to add BOD5.

Press the Add button. A new substance is added and becomes selected in its turn. Once you
press the Save button, the substance will appear in the list of the Edit Substances list or
select a substance window (See Figure 4.7).

20 of 59 Deltares

DRAF
T

Tutorial

Figure 4.6: Add, Copy or Edit Substances in Group window before BOD5 is added

Figure 4.7: Edit Substances list or select a substance window with the new sub-
stances selected.

4.4 Create processes

Now we have substances and we need to specify interactions between the substances. The
interactions are made by processes. In the Edit Substances list or select a substance
window we first click Biochemical Oxygen Demand - 5 day in the list at the right hand side.
Then the (empty) Select Processes window (Figure 4.8) appears. If we click the Add/Edit. . .
button there, the Add new and Edit existing Processes window (Figure 4.9) appears.

Deltares 21 of 59

DRAF
T

Open Processes Library, User Manual

Figure 4.8: The empty Select Processes window for “Biochemical Oxygen Demand - 5
day”

Figure 4.9: Add new and Edit existing Processes window

Now we will specify the process “Decay of Biochemical Oxygen Demand” and give it the ID
“BODDecay”.

Pressing the Add button causes several things to happen. First, a warning is displayed. It says
that this process is now in the list, but that it only stays there if the influences the substance
BOD5. This reflects the fact that a process computes fluxes between substances and the
system does not know yet between which substances you will create a flux with this process.
(You could, for instance, create a process that does a lot, but nothing with BOD5. In that
case the process will later on appear only in the list of the substances that are affected by this
process and not in the list for BOD).

22 of 59 Deltares

DRAF
T

Tutorial

If we press the OK button for the message, we automatically enter the Edit processes window
for this new process (Figure 4.10).

Figure 4.10: Edit processes window for process window for the newly created ’BOD-
Decay’ process.

This is an important window: it is your link with the computer code. We have to specify the
name of a Fortran subroutine. We will fill in the name of a subroutine that we will program
ourselves, to compute the ’BODDecay’ ’process.

Note: that you can use a generic approach here. If you have three types of bacteria for
which the mathematical description of the processes (decay or growth) differ only by their
coefficients, they may share the same Fortran routine. The same is true for ten heavy metals
or fifteen organic micro-pollutants that mutually react in the same way but only with differences
in reaction rates. Furthermore, the name of the subroutine is converted to uppercase (Fortran
standard) and is used in uppercase throughout.

We could call our subroutine “FIRSTORDER” and use it for all first order decay processes,
like coliform bacteria as well. This would be a very generic routine. This has a drawback:
We would have to include an additional process that computes the coliform decay rate as a
function of temperature, salinity and UV radiation. For BOD we have to include an additional
process that computes the BOD decay rate as a function of temperature and of available
oxygen. Instead of doing so, we will join these two steps into one subroutine for the decay of
BOD, that we will call “BOD_DECAY”.

The above reasoning shows the type of decisions you have to make to keep your library
manageable. It is a matter of taste whether you prefer a few, large subroutines or many
small subroutines. In general, smaller routines make the system more flexible but, like with
everything in life, exaggeration will do no good.

Deltares 23 of 59

DRAF
T

Open Processes Library, User Manual

(The two checkboxes act on horizontal/vertical exchanges in the upper right corner are re-
served for future use.)

We see three empty lists:

⋄ Input items
This is the list of all items that the process needs to do its computation

⋄ Output Fluxes
The list of all ‘arrows-between-substances’ that the process will compute

⋄ Other output items
The list of all output items that the process will produce.

Input items

We need the decay rate k1 for BOD as input parameter for the simple BOD decay formula:

∂BOD

∂t
= −k1 ·BOD (4.1)

In general however this decay rate is temperature-dependent according to:

k1 = k20 · T (T−20)
coef (4.2)

The rate equals the rate at 20 ◦C multiplied with a temperature coefficient to the power T−20.
This means that we now have three input items: temperature, the temperature coefficient and
the decay coefficient at 20 ◦C. We press the Add button besides the Input Items section and
the Edit Item window appears (Figure 4.11).

Figure 4.11: Edit Item window

Here we insert the ID “BOD_Dr_20” with the name “Decay rate at 20 C for Biochemical Oxy-
gen Demand” (this is 48 characters, so about the maximum for this field).

Remark:
⋄ ID’s are directly used in the computer-generated source code. So they should be valid

Fortran names. Use underscores in stead of minus signs. That is also the reason why
Oxygen should be preferred as ID rather that DO, because it then would be similar to
the Fortran DO-loop instruction.

We see that it is assumed to be the first item in the input sequence for this subroutine. You can
change that number to a higher number, but that will leave some entries with lower numbers

24 of 59 Deltares

DRAF
T

Tutorial

blank. If you mention here a lower number, that already exists, the system asks you whether
you want to replace the existing item or to move the existing item. This allows you to change
the order of items for your Fortran program.

The Show in UI for process checkbox is checked by default. If you uncheck this, your item
will be hidden and the user will not be able to specify it. You may do so if you would define
e.g. an item Pi, that you want to use consistently throughout the system, but you do not want
to show it to the users. Be aware that the item then needs to have a default value (e.g. 3.14
for the item Pi), because it cannot be resolved otherwise. This option also allows you to hide
some constants for the user that you do not want them to change. The only one who then can
change the value of the constant is you, through this developer environment.

You can specify the unit of the item either directly or select a previously entered unit from the
list, here we specify “[1/d]”.

An item specified this way can appear in many processes (like temperature does in general).
It has one default value, but per process you can specify whether you allow this default value
to be used, here “2.3”. The consequences of not allowing a default value is, that the item
must be specified as a modelled substance, the output of some process or as input provided
by the user. This is a method to force an entry by the user for the item for certain processes.
As soon as you modify the default value, the checkbox is checked automatically. You can
however uncheck it again.

Remark:
⋄ If you try to check Act on exchanges, the system produces a warning and refuses to do

so. This feature only can be checked for output items that are made on computational
element interfaces (e.g. a settling velocity) rather than on computational elements itself.
Once such an output item is made this way, you can select the existing item from the
ID listbox as an input item for other processes (e.g. the settling of suspended sediment
itself).

Also if you want to check the checkbox Active substance, the system refuses with a warning.
This checkbox is only meant for existing items that you selected from the ID listbox. If they are
a transportable substance (like Oxygen in our example) then this box will show up as checked.
Your entry could look like in Figure 4.12.

Figure 4.12: Edit Item window with the BOD Decay Rate filled in

We save this new item and see it appear in the Input Items list of the Edit Process window.

Deltares 25 of 59

DRAF
T

Open Processes Library, User Manual

We continue the same way with temperature and with the temperature coefficient.

1 Id “Temp_C”,
name “Temperature in degrees Celsius”,
unit “[oC]”

2 Id “Tcoef_BOD”,
name “Temperature coefficient for BOD - Decay”,
unit “[-]”

We continue the same way for BOD5. The formula, Equation 4.2, shows that we need not
only the decay rate, but also the actual BOD concentration to determine the decay flux.

1 Id “BOD5”,

When we leave the ID field and click another field, the system prompts that it already knows
a Biochemical Oxygen Demand - 5 day item (that was the substance that we defined earlier)
and asks permission to include it here. You press on Yes and all fields are filled in with the
settings for this substance. The checkbox Active substance is checked, since BOD is an
active, transportable substance. Now you can immediately press the Save button to add BOD
as input for your process.

Output fluxes

Now we press Add besides the Output Fluxes list, because we must influence the sub-
stances DO and BOD with our process. We define a flux with (see Equation (4.2))

1 Id “BOD5_flux”,
name “Decay flux of BOD-5”,
unit “[g/m3/d]”

The Edit item window looks like Figure 4.13. We see that there is also a Stochi button
available, that was not available for input items. This button will allow us to link our ‘arrow’ to
the substances between which the arrow works.

Figure 4.13: Edit Item window with specified flux and Stochi button.

26 of 59 Deltares

DRAF
T

Tutorial

4.5 Setting up the stoichiometry

After pressing the Stochi button a message appears. The message says that the Item settings
will be saved first to ensure consistency. That is because you are about to connect substances
to each other with a flux item and if you would save the links in the Edit stochiometry of flux
window but cancel the Edit Item session of the stochi, an inconsistency results. Once you
have confirmed the save action, the Edit stochiometry of flux window appears (Figure 4.14).

Figure 4.14: Edit Stochiometry of flux window

The flux you are editing is displayed in the title of the window. Fluxes can only act on sub-
stances that are already defined, so you should select the substance from the drop-down
list.

Now we must take some care: The formula says that the decay is −k1 · BOD5. If we
specify k1 and BOD5 with positive values, then a negative sign is required somewhere. If
we compute the flux as −k1 ·BOD5 in our subroutine, then we should use a positive factor
of +1.0 to let it work correctly on the substance BOD5. If we compute the flux as k1 ·BOD5,
on the other hand, we should use -1.0 as factor.

We will do the latter. So we choose “BOD5” (explicitly) for substance and “-1.0” as the factor
and we press Add. Our flux however also diminishes the Oxygen concentration in the same
way, so we also add “DO” as stoichiometry and “-1.0” as factor and add this. The result looks
like in Figure 4.15.

Figure 4.15: Edit Stochiometry of flux window after stoichiometry has been entered

Deltares 27 of 59

DR
AF
T

Open Processes Library, User Manual

Now we save the stoichiometry and we save the flux.

4.6 Generating computer code

The Edit Process window now shows the input items and the flux item in its lists, see Fig-
ure 4.16.

Figure 4.16: Edit Process with input items

We now have to create the subroutine that will do the actual work:

⋄ Fill in the name of the subroutine, “BOD_DECAY”
⋄ Press the CREATE button
⋄ The system generates a skeleton subroutine file.

We will call our subroutine “BOD_DECAY” and we press the CREATE button for the creation
of a Fortran file. The system tells that it successfully wrote the skeleton file and indeed we
see that a file named <BOD_DECAY.f90> is created in our working directory. The code
is standard Fortran90 except for the question marks where you are supposed to insert your
water quality computations. Inspection shows something like:

subroutine BOD_DECAY (pmsa , fl , ipoint , increm, noseg , &
noflux , iexpnt , iknmrk , noq1 , noq2 , &
noq3 , noq4)

!DEC$ ATTRIBUTES DLLEXPORT, ALIAS: 'BOD_DECAY' :: BOD_DECAY
!
!***
!

IMPLICIT NONE
!
! Type Name I/O Description
!

28 of 59 Deltares

DRAF
T

Tutorial

real(4) pmsa(*) !I/O Process Manager System Array, window of routine to process library
real(4) fl(*) ! O Array of fluxes made by this process in mass/volume/time
integer ipoint(4) ! I Array of pointers in pmsa to get and store the data
integer increm(4) ! I Increments in ipoint for segment loop, 0=constant, 1=spatially varying
integer noseg ! I Number of computational elements in the whole model schematisation
integer noflux ! I Number of fluxes, increment in the fl array
integer iexpnt(4,*) ! I From, To, From-1 and To+1 segment numbers of the exchange surfaces
integer iknmrk(*) ! I Active-Inactive, Surface-water-bottom, see manual for use
integer noq1 ! I Nr of exchanges in 1st direction (the horizontal dir if irregular mesh)
integer noq2 ! I Nr of exchanges in 2nd direction, noq1+noq2 gives hor. dir. reg. grid
integer noq3 ! I Nr of exchanges in 3rd direction, vertical direction, pos. downward
integer noq4 ! I Nr of exchanges in the bottom (bottom layers, specialist use only)
integer ipnt(4) ! Local work array for the pointering
integer iseg ! Local loop counter for computational element loop

!
!***
!
! Type Name I/O Description Unit
!

real(4) Temp_C ! I Temperature in degrees Celsius [oC]
real(4) BOD5 ! I Biochemical Oxygen Demand - 5 day [g/m3]
real(4) BOD_Dr_20 ! I Decay rate at 20 C for Biochemical Oxygen Demand [1/d]
real(4) Tcoef_BOD ! I Temperature coefficient for BOD - Decay [-]
real(4) BOD5_flux ! F Decay flux of BOD-5 [g/m3/d]
integer IBOD5_flux ! Pointer to the Decay flux of BOD-5

!
!***
!

ipnt = ipoint
IBOD5_flux = 1

!
do 9000 iseg = 1 , noseg

!
Temp_C = pmsa(ipnt(2))
BOD5 = pmsa(ipnt(4))
BOD_Dr_20 = pmsa(ipnt(1))
Tcoef_BOD = pmsa(ipnt(3))

!
! ***** Insert your code here *****
!

BOD5_flux = ??????
!
! ***** End of your code *****
!

fl (IBOD5_flux) = BOD5_flux
!

IBOD5_flux = IBOD5_flux + noflux
ipnt = ipnt + increm

!
9000 continue

!
return
end subroutine

The skeleton code shows:

⋄ The decay rate at 20 ◦C is input parameter 1
⋄ The temperature in degrees Celsius is input parameter 2
⋄ The temperature coefficient is nr. 3
⋄ The concentration of BOD is nr 4.
⋄ The flux (the amount of BOD that is decayed) is saved in the FL array.

At the location of the question marks we just insert: our process code. The code for our

Deltares 29 of 59

DRAF
T

Open Processes Library, User Manual

sample case is:

BOD5_flux = BOD_Dr_20 * TCoefBOD**(Temp_C-20.0) * BOD5

With this we have completed our computer code and we can compile it to run our water quality
model.

Note: that if we specified a stoichiometric factor of +1.0 rather than -1.0, we would have had
to specify the flux as -1.0 times the flux shown above.

Save your subroutine at a safe location, because every time you press the Fortran button for
this process, this subroutine may be overwritten. Note also that the whole linkage to data and
other substances is resolved by the system itself. We just need to insert our process formula
in Fortran style.

Note: also the compiler directive in line 4. It is used by the Intel Fortran compiler to properly
prepare the library (that is, the subroutine can be used from outside the DLL that should be
produced). You may need to change this to the conventions of your own Fortran compiler.

4.7 Make a Windows DLL from your source files

Once you have created one or more subroutines for use in the water quality module, you need
to compile them and link them into a dynamic link library, called D3Dwaq_OpenPL.dll2. This
library must then be found by the water quality module.

While the procedure varies for each compiler, we describe it for the Microsoft Visual Studio
and Intel Fortran:

⋄ Store the relevant source files in a separate directory, for easy reference
⋄ Start the Visual Studio and create in this directory a project of the type “Fortran Dynamic

Link Library”. Set the name of the project to “D3Dwaq_OpenPL” or make sure that the
resulting DLL is called “D3Dwaq_OpenPL.dll”

⋄ Add the source files to the Visual Studio project
⋄ Starting from version 4.02.00 of Delft3D, you have to build a 64-bit DLL. When you are

using a seperate Delwaq version (e.g. built from the open source code), you will have to
make sure to use a 32-bit DLL (Windows) or so (Linux) with a 32-bits Delwaq executable,
and a 64-bit DLL or so (Linux) with a 64-bits Delwaq executable. In Visual Studio you can
add a 64-bit configuration through the menu via Build - Configuration Manager... .

⋄ Build the DLL

When this is done, the DLL and the process definition file must be copied to a spot where the
water quality module can find them. This is described in the next section.

Note: On Windows, you can check wheter executables and dll’s are 32-bit or 64-bit using tools
like Dependency Walker (http://www.dependencywalker.com/). Here you can also see if your
fortran subroutine is actually available in the DLL.

Note: in the next section a semi-automatic procedure is described to help you with the build
process.

2On Linux is this D3Dwaq_OpenPL.so – note the mixture of upper and lower case!

30 of 59 Deltares

DRAF
T

Tutorial

4.8 Incorporation of your new process library database

The database file that you created must be copied to the location in your Deltares software
environment where the file <proc_def.dat> file is located. For the Delft3D environment this
is e.g. the directory <C:\Program Files\Deltares\Delft3D 4.1.0\win32\waq\default\> if you in-
stalled the system in the <C:\Program Files\Deltares\Delft3D 4.1.0> directory. If the existing
<proc_def.dat> file is not empty (you got a license for the Deltares processes library as
well), this file should be saved for future use. Now you copy your file to overwrite the existing
<proc_def.dat> in the directory.

As these actions are somewhat tedious and error-prone, we provide automatic procedures to
do this.

4.8.1 Delft3D

The menu by which you start the PLCT in developer mode, also facilitates the building and
installation of the new library, see Figure 4.17.

Figure 4.17: Open Processes Library (OPL) window

⋄ The assumption is that the working directory is the directory that contains or will contain
the sources, the files required for building the library and the library itself.

⋄ The button marked Build starts the Visual Studio for either a select you select or the only
solution in that directory. This way you can adjust the source files you just generated and
build the DLL without leaving Delft3D.

⋄ If there is no solution file yet, an empty one will be copied, with the right settings. All you
need to do is, add the source files and edit them.

⋄ The button marked Install copies the various files (that is, the database file, which must
be called <proc_def.dat> and the DLL, called <D3Dwaq_OpenPL.dll> from either the
debug or the release directory, whichever is newer, into the Delft3D installation). The
original files will be saved, so that you can restore them whenever you want.

⋄ The button marked Restore will restore the original Delft3D processes database and it will
remove the extra DLL.

The most important thing to keep in mind is that the procedures behind these buttons assume
fixed file and directory names, so that you do not need to select files over and over again.

Deltares 31 of 59

DRAF
T

Open Processes Library, User Manual

4.8.2 SOBEK

In development

4.9 Modify an existing process library

Now it is also time to save our work. We press the Save buttons in the various windows until
we reach the Processes Library Configuration Tool window again and we press Save from
the File. Specify a meaningful name and your very first and small process library is created.
You exit the computer program and you restart it using the freshly created process library.

You now see that the ‘BOD-DO’ group exists in the Select Groups window. If you select it
and click the right list of this window, the substances in this group are shown. Here you find
’Dissolved Oxygen’ and ’Boichemical Oxygen Demand - 5 day’. If you now select Dissolved
Oxygen, you see that the ’Decay of Biochemical Oxygen Demand (BODDecay)’ process is
listed as process for this substance. That is because the flux made by the BOD_Decay pro-
cess also affects Dissolved Oxygen through its stoichiometry.

If you make the process active, you enter immediately into a specification window (see Fig-
ure 4.18) because some of the items are not specified: neither BOD5 or Temp_C have a
default.

[htb]

Figure 4.18: Specify processes window for process: Decay of Biochemical Oxygen De-
mand

If you press Cancel in this window and also Cancel in the window by which you made the
process active, you can switch on ’Dissolved Oxygen’ together ’Biochemical Oxygen Demand
- 5 day’. After selecting ’Dissolved Oxygen’ in right hand side listbox the window Select Pro-
cesses appears. Press the button Specify. . . and nearly the same window as in Figure 4.18
appears but you will see that the BOD5 item is now considered to be ‘modelled’.

The item Temp_C, temperature in ◦C, still has no value and if you click that it is Editable, it will

32 of 59 Deltares

DRAF
T

Tutorial

appear in the Delft3D and SOBEK user interface for specification. You should be able to use
this model set-up for an actual computation. The result will be something like Figure 4.19 for
a river that flows with 1 m/s.

Figure 4.19: BOD-DO curve for BOD-Decay. x-axis in km. y-axis BOD (lower graph) and
Oxygen (upper graph).

Our BOD-DO model is not ready yet, because in this classical model there is also reaeration
of oxygen at the water surface that we should incorporate as a process. We need to enter the
developer mode again.

In the Selected Substances list box, we select ’Dissolved Oxygen’ to add a process (see
Figure 4.20).

Figure 4.20: Adding substance ’Dissolved Oxygen reaeration’

We will implement the well-known O’Connor-Dobbins reaeration formula (O’ Connor and Dob-

Deltares 33 of 59

DRAF
T

Open Processes Library, User Manual

bins, 1956):

Rearation rate (1/day) =
3.95 · v0.5

Depth1.5
(4.3)

Some remarks must be made here:

Remarks:
⋄ O’Connor derived his formula for the concentration equation and got a rate of 1/day.

The correct dimension in a numerical model is m/day. The 1/day rate is obtained after
multiplication with the water surface area [m2] and division by the underlying water
volume [m3]. This means the reaeration coefficient consists of a 3.95 · (v/Depth)0.5

part [m/day] and a 1/Depth part [1/m] from surface area divided by volume. The last
term reflects that surface reaeration influences shallow water more pronounced than
deep water.

⋄ Because O’Connor derived his formula for depth-averaged modelling, both factors con-
taining the depth were equal for him. In a 3D model you should use the total water
depth in the factor 3.95 · (v/Depth)0.5 and the depth of a computational element in
the factor 1/Depth.

To get the oxygen flux, we have to multiply the O’Connor-Dobbins rate with the difference
between the oxygen saturation value and the actual oxygen concentration. So we define a
reaeration process with five input items and one output flux item. Five input items:

1 Id “Velocity”,
name “Water velocity in midpoints of comp. elements”,
unit “[m/s]”

2 Id “Tot_Depth”,
name “Total water depth at this horizontal location”,
unit “[m]”

3 Id “Depth”,
name “Water depth of this computational element”,
unit “[m]”

4 id “DO_Sat”,
name “Saturation value for Dissolved Oxygen”,
unit “[g/m3]”

5 id “Oxygen”,
name “Dissolved Oxygen”,
unit “[g/m3]”

and one output flux item:

1 id “DO_R_flux”,
name “Reaeration flux for Dissolved Oxygen”,
unit “[g/m3/d]”

34 of 59 Deltares

DRAF
T

Tutorial

Figure 4.21: Edit Processes window for the DO-reaeration process

The process produces the Reaeration flux with dimension gO2/m3/day. If the influx of Oxygen
through the water surface is considered positive, then we add +1 for DO in the stoichiometry
window. We insert the O’Connor-Dobbins reaeration rate formula in the skeleton Fortran file
and multiply it with (Saturation value minus Dissolved Oxygen concentration) to obtain the
reaeration flux.

Figure 4.21 shows how the reaeration process would look like in the Edit Processes window
after you followed similar procedure as described for the set up of decay of BOD5.

Deltares 35 of 59

DRAF
T

Open Processes Library, User Manual

.......
integer noq4 ! I Nr of exchanges in the bottom (bottom layers, specialist use only)
integer ipnt(5) ! Local work array for the pointering
integer iseg ! Local loop counter for computational element loop

!
!***
!
! Type Name I/O Description Unit
!

real(4) Velocity ! I Water velocity in midpoints of comp. elements [m/s]
real(4) Tot_Depth ! I Total water depth at this horizontal location [m]
real(4) Depth ! I Water depth of this computational element [m]
real(4) DO_Sat ! I Saturation value for Dissolved Oxygen [g/m3]
real(4) Oxygen ! I Dissolved Oxygen [g/m3]
real(4) DO_R_flux ! F Reaeration flux for Dissolved Oxygen [g/m3/d]
integer IDO_R_flux ! Pointer to the Reaeration flux for Dissolved Oxygen

!
!***
!

ipnt = ipoint
IDO_R_flux = 1

!
do 9000 iseg = 1 , noseg

!
Velocity = pmsa(ipnt(1))
Tot_Depth = pmsa(ipnt(2))
Depth = pmsa(ipnt(3))
DO_Sat = pmsa(ipnt(4))
Oxygen = pmsa(ipnt(5))

!
! ***** Insert your code here *****
!

DO_R_flux = ??????
!
! ***** End of your code *****
!

fl (IDO_R_flux) = DO_R_flux
!

IDO_R_flux = IDO_R_flux + noflux
ipnt = ipnt + increm

!
9000 continue

!
return
end subroutine

Figure 4.22: Source code of the Oxygen Reaeration process

Figure 4.22 shows the corresponding source code of the reaeration process and Figure 4.23
shows the result that would be obtained with a saturation value of 10 mg/l, a water depth of
10 m and a river stream velocity of 1 m/s. A minimum concentration of oxygen can be seen
after about 100 km, although it is not striking for this relatively fast flowing large river.

36 of 59 Deltares

DRAF
T

Tutorial

Figure 4.23: BOD-DO curve for BOD-Decay as before, but now with reaeration

4.9.1 Towards advanced features

The addition of reaeration brings up some questions:

⋄ Why consider the water velocity as ‘input’, it should be known by the model.
⋄ Why consider the total water depth and the depth of a computational element as input, it

should be known by the model.
⋄ The oxygen saturation value depends on temperature and salinity.

The last item is easiest to deal with. It is analogous to the temperature dependence of BOD-
Decay. It can be incorporated in this process (and then temperature and salinity should be
added to the set of input variables) or you can compute the DO-saturation value by a separate
process, that is a matter of taste. In any case it is useful to let your Fortran routine also
compute the percentage of saturation as output variable, because that can be a useful item
for graphical presentation.

The flow velocity and the total depth and depth of computational elements need to be calcu-
lated by separate processes. The water quality module only has flow velocities at the inter-
faces of computational elements and the total depth and element depth are no state variables
at all. There are several solutions to this issue. You can:

⋄ Use the pre-programmed processes in the standard processes library that take care of
velocity and both depth values. You do so in the standard processes library by selecting
the items ‘Velocity’, ‘Depth’ and ‘TotalDepth’ that are already available there. They are
calculated by the processes ‘Veloc’, ‘DynDepth‘ and ‘TotDepth’ respectively.

⋄ Or you can also program them yourself, as will be explained in the Chapter 5. If you do
the last, you need to do so only once, because once the processes are on your bookshelf,
you can use them any time you want.

If you follow the last line of working, you will get more familiar with the advanced topics of
process library programming. This basically should allow you in the end to rebuild Deltares
pre-programmed processes library yourself from scratch, using our technical reference man-
ual, and program anything additional that comes to your mind. We will follow the second line
in this tutorial to show you examples of more advanced programming efforts.

Deltares 37 of 59

DRAF
T

Open Processes Library, User Manual

38 of 59 Deltares

DRAF
T

5 Advanced programming

In Chapter 4 the basics of setting up a process library have been shown. It may seem some-
what complicated to conduct so many actions to set up the classical Streeter-Phelps BOD-DO
model (Streeter and Phelps, 1925). The advantage however is, that you do this only once for
each substance or process that you want to include. Then they are in the library and you can
easily decide to switch substances on or off and processes on or off, without having to bother
about IT things as “what input is connected to what piece of the software”.

Once you have included correct pieces of Fortran in the tiny objects called process routines,
you cannot make any programming errors anymore. You add substances and processes by
adding new routines in the same way to the existing library. You use only what you switch on.
Not fully tested new developments (like the products of students in an academic environment
or results from still ongoing in-house research) can be added without disturbing the functioning
of the existing system as long as they are not switched on. This is a systematic and consistent
way to preserve your investments in research and developments without having to bother
about versions and releases of source code and merging of source code.

The topics mentioned in this Advanced features section may seem even more cumbersome
than the first introduction of the BOD-DO model, but they also need to be done only once and
then future developments can easily benefit from their results.

5.1 Use hydrodynamic results to compute depth

The first advanced program is the use of hydrodynamic model results ‘on the fly’ to compute
the water depth of a computational element. The procedure is given pointwise with explana-
tion added to several points, so it is more or less cook-book style, but you should understand
the reasons while doing it.

1 Open the PLCT, using the newly saved BOD-DO kinetics in developer mode.
2 Select e.g. Dissolved Oxygen and press the ‘Add/Edit’ button in the ‘Select Processes’

window
3 Make a new process called ‘Depth’; ‘Computation of depths of computational elements’
4 Add the process and see the ‘Edit processes’ window open. Call the Fortran routine

DEPTH and press Add at the Input items section.
5 Press the list button for Item ID’s. And see that there is an item VOLUME and SURF in this

list. You did not define this items, they were defined already, because they are available
from the hydrodynamic computation. We will add both as input item.

6 In the Fortran routine we will compute the depth of a computational element by dividing
the volume through the horizontal surface area. We will not produce a ‘Flux’, but we will
produce an output. This will be called ‘Depth’ and will be the corresponding input item for
the reaeration formula. So press Add in the Output Item section and add the existing item
‘Depth’ to this Output Item section.

7 Now we create the skeleton Fortran file as <DEPTH.f90>
8 We insert Depth = VOLUME/SURF in the user-code section of the Fortran routine. If

you feel not sure, you could insert: Depth = 1.0 and then if (SURF > 1.0E-10)
Depth = VOLUME/SURF. This is safer in case the horizontal surface could have a value
of zero.

9 You save your newly created version of the process library.

We will check what happened:

a. We open the PLCT again and choose our newly created processes file. Do not enter the
developer mode.

Deltares 39 of 59

DRAF
T

Open Processes Library, User Manual

b. We press the Edit button for Extra processes and see that the window is empty.
c. We select the group BOD-DO
d. We select the substance Dissolved Oxygen and we switch the Reaeration process on.
e. We enter immediately into the Specify Process window, because some of the input is not

resolved (velocity, total depth and saturation value of dissolved oxygen, if you did not give
these items a default value).

f. You also see that the depth of the computational element is now resolved and will be
computed by the process called ‘Depth’.

g. For all items without a default you check Editable and you press OK
h. Now you will see in the Edit Extra processes window, that the process ‘Depth’ has ap-

peared.

This means that the computation of depth is switched on automatically as soon as you switch
on the ‘Reaeration’ process that needs the depth. If it is not needed, the depth is not com-
puted. If it is needed several times in different processes, it is only computed once and used
everywhere where needed. It is now ‘on the shelf’ of your processes library.

5.2 Use hydrodynamic results to compute the velocity

The second advanced programming effort is in the computation of the flow velocity. As stated
before, you can use our standard process for that aim, but the development of a routine of
your own gives valuable experience and insight in how to deal with these topics.

You must realise that the water quality module uses the so called finite volume approach.
For the mathematicians: this means that the advection diffusion equation is integrated over
all individual computational elements. Gauss’s theorem furthermore says that the volume
integral of the advection and diffusion terms equal the surface integral of the advective and
diffusive fluxes through the outer surface of each volume. This ensures mass conservation,
but it also explains why in the water quality module the velocities are known at the segment
interfaces only. Even they are not known as velocities, but as flows and cross-sectional areas,
but that is a minor detail, since velocity = flow/area.

Now you have to decide how to compute the velocity that is representative in a computational
element in e.g. a 1D-branched river basin network. That is a modelling decision. It has nothing
to do with the concept of an open processes library. Any model using a so-called staggered
grid (velocities defined at the interfaces of computational elements) has to incorporate a pro-
cedure to assess velocities that are representative for the computational elements itself. The
open processes library, however, allows you to develop your own ideas on this topic. For a
1D branched river, you could consider to average velocities proportional to the areas after a
split or before a confluence and to average the upstream and downstream value. This would
create the following formula for a split or confluence:

v = 0.5
Qi

Ai

+ 0.5

 Q1
i+1

A1
i+1

A1
i+1 +

Q2
i+1

A2
i+1

A2
i+1

A1
i+1 + A2

i+1

 ≈
Qi +Q1

i+1 +Q2
i+1

Ai + A1
i+1 + A2

i+1

(5.1)

The approximation is exact if the sum of the two surface areas after the split equals the
surface area before the split. The resulting formula is simple to implement. You sum all flows
and areas associated with a computational element separately and divide in the end.

To compute the horizontal velocity in a 2D-horizontal model (or in one layer of a layered 3D
model), you could use the same procedure for each of the 2 main directions if main directions
can be distinguished. Then however you need to use Pythagoras law to compute the velocity

40 of 59 Deltares

DRAF
T

Advanced programming

as the root of sum of squares of the velocities in the two main directions. If the grid is irregular,
it is difficult to propose an approach. Finite element models may deliver you the velocities in
the nodes, for finite volume models on irregular grids you must make ‘the best of it’.

How can your process routine see that it is operating in a 1D, 2D or 3D environment? When
you inspect the skeleton Fortran routine in detail, you will see a NOQ1, NOQ2, NOQ3 and a
NOQ4 in the parameter list. They reflect the number of interfaces between computational ele-
ments in four directions. The number in the first horizontal direction, NOQ1, generally always
differs from 0. The number in the second horizontal direction, NOQ2, generally does so only if
you have a horizontal or layered 3D model with two distinct directions. The number in the third
direction, NOQ3, reflects the number of vertical interfaces. It determines whether your model
is horizontally only (NOQ3=0), 2D-vertically (NOQ1 and NOQ3 non zero, NOQ2=0) or 3D
(NOQ1, NOQ2 and NOQ3 are non zero). In a 1D-vertical model NOQ3 may even be the only
non-zero of the three. NOQ4 is the number of interfaces between computational elements
within the water bottom.

A further inspection of the subroutine header gives you an integer variable IEXPNT. This is not
a single variable. It is an array with dimension (4, NOQ1+NOQ2+NOQ3+NOQ4) . It stores
for each of the interfaces between computational elements the ‘from’ element number, the
‘to’ element number, the ‘from-1’ element number and the ‘to+1’ element number respectively.
The last two may be zero is the interface with the hydrodynamic model does not support them.
They allow for higher order approximations along the directions if present.

The cookbook style procedure to make the velocity now becomes:

1 Open the PLCT, using the just saved BOD-DO kinetics
2 Switch ‘Developer mode’ on and select e.g. Dissolved Oxygen and press the Add/Edit

button in the Select Processes window
3 Make a new process called “Calvelo”; “Computation of horizontal velocities of computa-

tional elements”
4 Add the process and see the Edit processes window open. Name the Fortran file to

“CALVELO” and press Add at the Input items section.
5 Press the list button for Item IDs. And see that there is an item FLOW and XAREA in this

list. You did not define this items, they were defined already, because they are available
from the hydrodynamic computation. We will add both as input item.

6 In the Fortran routine we will compute the velocity in a computational element by the earlier
described procedure. We will not produce a ‘Flux’, but we will produce an output. This will
be called ‘Velocity’ and will be the corresponding input item for the reaeration formula. So
press Add in the Output Item section and add the existing item “Velocity” to this Output
Item section.

7 Now we create the skeleton Fortran file as CALVELO.f
8 We insert the earlier described computational procedure in the user-code section of the

Fortran routine. If you feel not sure, you could insert precautions for the case where the
XAREA is zero. Your will look like in Figure 5.1. See also the explanatory text following
the figure.

9 You save your newly created version of the process library.

We could not lean that much any more on the skeleton Fortran file that was produced by the
software.

⋄ In the declaration section we had to add a loop-counter over exchanges, called IQ and two
convenience variables “Ifrom” and “Ito”.

⋄ We furthermore had to declare working space in the form of two allocatable arrays: “Sum-
Flow” and “SumArea”. With the ‘SAVE’ attributed they are allocated only once and reused

Deltares 41 of 59

DRAF
T

Open Processes Library, User Manual

Figure 5.1: Computer code to compute horizontal velocities

42 of 59 Deltares

DRAF
T

Advanced programming

every timestep, that is better for performance.
⋄ Then we constructed a loop over NOQ1 exchanges and picked the FLOW and AREA vari-

ables directly from the PMSA array, without incrementing the IPNT pointer like in previous
code.

⋄ We got the values for the Ifrom and the Ito variables from the exchange pointers IEXPNT
as explained and we summed Flows and Areas.

⋄ Then we included a segment loop that is somewhat comparable with previous code ex-
amples and store the velocity directly in the PMSA array without incrementing IPNT

⋄ If there is a second direction, we do the same in the second direction and apply Pythago-
ras. Note how we picked Ifrom and Ito from IEXPNT for this second direction.

Although this code is already somewhat more complicated, it should be easily understood by
an average Fortran programmer. Again, you do this only once, you add the routine to the DLL
and your process producing ‘Velocity’ is “in the library” and is even switched on automatically
if some other process needs this ‘Velocity’.

5.3 Compute the total water depth

The third advanced programming effort is the computation of total water depth. This variable
may be produced by the hydrodynamic model and may be available as parameter specified
through an external file from the hydrodynamic model. You may also use our pre-programmed
code for that aim. In this tutorial however we use the subject to show how the vertical is
addressed in the processes library.

The ‘depth of computational elements’ as computed in 5.1 is equal to the ‘total water depth’
for depth averaged models. For layered models however the ‘total water depth’ is the sum of
all depths of all layers on top of each other.

We must make some restrictions here. The first is that it is only possible for a process routine
to compute total depth in a layered system. The water quality module allows for arbitrarily
shaped and stacked computational elements, but with a free vertical topology (e.g. one ele-
ment having more elements on top of it and covering only part of another element that also
expands to the side of it) it is impossible to program the intelligence to compute total water
depth from individual depths. Secondly, although not impossible, it is difficult to program in-
telligence to compute total water depth if the (exchange pointers between the) layers are not
stored in either a systematic order form top to bottom or from the bottom to the top. WAQ
at the moment generally uses the order that the first layer is the surface water layer and the
last layer is the bottom layer and also stores its pointers that way, but the routine that we will
develop will also work for the other way around. The routine that we will develop will also work
for incomplete layers (e.g. strictly horizontal layers that may disappear partly at shallow loca-
tions, so called z-coordinates contrary to σ-coordinates). The procedure will be developed
along the following lines:

⋄ The depth of each computational element will be copied to the ‘total depth’ array. If there
is no vertical in the model, the procedure stops.

⋄ The vertical ‘from’ and ‘to’ exchange pointers will be used to sum the depth of the ‘from’
element to that of the ‘to’ element and set the depth of the ‘from’ element to zero. After
this step is completed, either at the top or at the bottom now the total water depth is
accumulated and at the remainder of the water column the depth is zero. For dry parts
of incomplete layers, it is assumed that zero depth was stored in the array locations (so
zero volume of the computational element). This requirement can be relaxed later on,
because then the options to check whether a computational element is dry or wet etc. will
be discussed.

⋄ The vertical ‘from’ and ‘to’ pointer table is travelled in reversed order and all depth value

Deltares 43 of 59

DRAF
T

Open Processes Library, User Manual

Figure 5.2: Code to compute the total water depth at all locations

larger than zero in a ‘to’ element is copied to the location for the ‘from’ element. The result
of this is that in all locations along the water column the same ‘total depth’ of that water
column is stored.

We may call our Fortran routine for this process TDEPTH and call the process TotDepth. We
will only have one input variable, the already existing item ‘Depth’. We will produce one output
variable, the already existing item ‘TotDepth’. We will produce no fluxes. The code looks like
in Figure 5.2.

Remarks:
⋄ The loops with labels 20 and 30 are automatically skipped if NOQ3 equals zero (so if

no vertical is present).
⋄ Here (and also in 5.2 to compute the velocities) the construction with the IPNT and the

INCREM array are not used any more. That construction is aimed to deal with spatially
constant values (INCREM = 0) and spatially varying values (INCREM = 1) in the same
routine. This allows for process routines that operate equally well for spatially constant
steering (as may be used in some applications) as for spatially variable steering (as may
be used in other applications). The fact that this construction is not used in sections 5.2
and 5.3 reflects the fact that it is assumed that velocities, flows, exchange areas and
water depths will always be spatially distributed variables.

44 of 59 Deltares

DRAF
T

Advanced programming

Figure 5.3: Code modified with lines for computation at active segments only

5.4 The feature or segment property

Up to now all computational elements were considered the same. They however may not
be the same. In some Delft3D schematisations a full matrix is used with roughly half of the
computational elements being active and the others being inactive. One may want to limit
water quality computations to active elements only. Speaking about Delft3D, the reaeration
as introduced in previous BOD-DO example only works at the water surface. This means that
we want to ‘see’ whether our computational element is a water surface element (and equally
for any bottom oxygen demand that you may whish to introduce) you want to see whether
a computational element is at the bottom. There are generic approaches for this, allowing
your model to automatically work correct both in depth averaged mode and in modes with a
schematisation between the surface and the bottom like in 2D-vertical and in 3D models.

Together with the software of you developer version, a set of Fortran subroutines is delivered
(in source code). You must compile them together with your process routines to the Windows
‘dll’ or to the Linux ‘run-time library’ that you will use for modelling. One of the routines is
the DHKMRK routine. It looks into a ‘segment property’- or ‘feature’-array for values. This
IKNMRK array is one of the arguments to your own process routine. You invoke the routine
with: CALL DHKMRK (feature number, IKNMRK(ISEG), result). The middle argument comes
from the argument and the integer ISEG is the linear segment number like in the BOD-DO
example.

Active or inactive computational elements

A call to DHKMRK with feature number 1 returns integer one (1) for active computational
elements and zero (0) for elements that are not active at that time. So the computation is
limited to active computational elements only by the insertion of code like in Figure 5.3.

Be aware! The ‘endif’ of this ‘if’ statement should be placed before all pointers are incremented
(lines 58 and 59 in Figure 5.3). The issue was to skip inactive computational elements. Those
computational elements are there in storage and in the linear numbering, so you should skip
the inactive elements by incrementing the pointers only.

Deltares 45 of 59

DRAF
T

Open Processes Library, User Manual

Figure 5.4: Sample Fortran file for reaeration of Dissolved Oxygen

Computational elements at the water surface or at the water bottom

The call to DHKMRK with feature number 2 as argument returns an integer that can be tested
for its value as follows:

⋄ Value is 0; the computational element has both a water surface an a bottom (typical for
depth averaged modelling)

⋄ Value is 1; the computational element has a water surface but no water bottom
⋄ Value is 2; the computational element has no water surface and no water bottom
⋄ Value is 3; the computational element has no water surface, but it has a water bottom.

The process routine for reaeration that was not furthermore elaborated in detail in Chapter 4,
could look like in Figure 5.4.

If you carefully proceed along these lines of computer code generation, you make your mod-
elling library functioning equally correct for vertically average modelling and for layered mod-
elling of e.g. stratified lakes or 3D estuaries. The standard Deltares processes library e.g. is
developed in this way, so exactly the same library is used in the Delft1D/2D - SOBEK system
and in the Delft3D system, making water quality modelling completely consistent.

46 of 59 Deltares

DRAF
T

Advanced programming

5.5 Settling from the water column towards the bottom

The BOD-DO example up to now was limited to the water column either as one depth av-
eraged computational element or as layered system of computational elements. Part of the
water quality substances may not be dissolved but may be particulate. Especially in BOD as
raw sewage a substantial part may be released as particulate fraction. The settling tanks in a
treatment plant may reduce the release of particulates, but may not fully eliminate them. And
why wouldn’t you want to apply the water quality model to a settling tank? Roughly there are
two approaches to the settling of substances:

⋄ You define additional substances for the settled substances. Those substances are NOT
transported with the water and are only found in the bottom layer of a 3D system. Settling
then means a migration from the water-bound normal substance to the settled-substance.
This is the way the simple sediment model in Deltares processes library works. All partic-
ulate substances in the water have their S1 and S2 equivalent for the first and the second
sediment layers. But also all sediment models with own, often analytical, solutions of the
behaviour IN the bottom work this way. In dedicated versions of the Deltares processes
library this holds for the European ERSEM model and for the US-HydroQual Sediment
Flux Model (SFM).

⋄ You define bottom layers underneath the water phase. Now no additional substances
are defined, but the same substances also exist in bottom layers. The settling from the
water column now is just a transport process from a water bound computational element
to a computational element in the bottom (and through benthic mixing by worms or other
invertebrates the substance can reach lower bottom layers as well). This approach is used
in the ‘Layered bottom’ version of the Deltares processes library

It is to be expected that the second approach of a layered bottom will replace the first approach
of separated bottom models with own substances in the bottom, within several years. Up
to now however most models behave with the first approach so this tutorial will focus on
the first approach. There is another reason to do so. Often an approach with one or two
bottom layers is simpler to implement and adequate for the problem at hand, while the layered
bottom approach requires additional schematisation of the water bottom and of the transport
processes in the water bottom. The basic reason to include the water bottom in Dissolved
Oxygen models is twofold:

⋄ You want to model the disappearance of organic Carbon and Nitrogen towards the water
bottom in such a way that it does not influence the water phase any more. This is the case
if part of the organic matter will migrate to the confined bottom to become oil or natural
gas in the end.

⋄ You want to include a reduced decomposition of the material that settled to the bottom. In
such a way the pool of dead organic matter increases rapidly at the die off of algae blooms
and reduces gradually over the months to follow. This is the origin of the so called ‘bottom
oxygen demand’.

Oxygen models exist where a bottom-oxygen-demand is included as a parameter, as a co-
efficient that can be set to e.g. 1 gO2/m2/day or so. It must be noted that the only source
of organic matter that can cause such a ‘bottom-oxygen-demand’ is the organic matter that
settled towards the bottom at earlier days. That is why this approach is not recommended.
It allows you to let the bottom demand more oxygen than would be justified by the settling of
organic matter in the past. It also allows you accumulate dead organic matter on the bottom
without knowing it if the bottom oxygen demand is much lower than would be justified by the
settling of organic matter in the past. It basically is a violation of the law of conservation of
mass of organic matter.

Deltares 47 of 59

DRAF
T

Open Processes Library, User Manual

The settling discussed here can be included as a process by the following steps:

1 Define a new substance being the BOD at the water bottom called BOD_Sed. Take care
that you specify that it is NOT transported by the water (see section 4.3)

2 Add the computation of the shear stress τ to the process that computes the water velocity
(see section 5.2). The formula can e.g. be

τ =
ρ · g · Velocity2

Chezy2
(5.2)

More advanced approaches are possible with additions of the effects of wind generated
waves and the influences of shipping. It is also possible to make a separate process to
compute τ with the water velocity as an input. All up to you.

3 Make a process and a coorsponding Fortran source code that computes the settling of
BOD e.g. according to the following formula:

fSed = vsed ·max

(
0, 1− τ

τc

)
·BOD (5.3)

with τc is the critical shear stress for sedimentation and vsed is the settling velocity in still
water.

4 Modify the process such that it only works for those computational elements that have a
water bottom (see section 5.5). This makes your model working equally well for 1D, 2D
and 3D applications.

5 Set the stoichimetry (see section 4.5) such that the settling acts with factor −1 on BOD
and with a factor of +1 on BOD_Sed.

In the same way a resuspension process can be constructed that takes material from the
BOD_Sed pool towards the BOD pool as soon as the shear stress is so high that resuspension
occurs.

5.6 The vertical velocity in 3D models

In section 5.5 we discussed the settling of particulates towards the water bottom. It should
however be noted that particulates generally also have a vertical gravity velocity in the water
column that must be taken into account especially in 3D and in vertical 2D or 1D models. This
is special, because all processes and items up to now were computed per computational ele-
ment whereas transport velocities and flows are defined on interfaces between computational
elements. A first encounter of this phenomena was in section 5.2 where we computed the
segment velocity using the flows and the cross-sectional areas at the interfaces that came
from the Hydrodynamic model. Now we will produce ourselves an additional settling velocity
in the water column. The procedure is as following:

1 Define a process that will compute the settling velocity, with all input that you might need
to do so. In its simplest form this input it is just one coefficient, the settling velocity of
that particulate. However for e.g. cohesive sediments many formulations are known that
relate the settling velocity to the concentration of the sediment, either positively through
cohesion of single particles or negatively through hindered settling.

2 Define as output item for this process the additional settling velocity at the interfaces (see
section 4.4). But now you specify that this output item should act on exchanges (see
Figure 4.12). Now something special happens. You are asked whether you want to specify
a velocity type term or a diffusion (mixing) type term at the interfaces or no specific term
at all. You select ‘velocity’.

3 Make a Fortran routine that computes this velocity. For our vertical velocity, you set the
value at 0.0 for the first NOQ1+NOQ2 entries in the array (those are the horizontal ex-
changes) and you fill in the computed vertical velocity in the NOQ3 entries. Be sure that

48 of 59 Deltares

DRAF
T

Advanced programming

you use the correct sign (if the first layer is on top and the NOQ3 pointers are adminis-
trated positively from top to bottom (as is common in the standard processes library of
Deltares (WL |Delft Hydraulics)) then a positive settling velocity acts towards the bottom
(and a negative velocity would e.g. account for the floatation like with algae and oil)).

4 You see that a stochiometry button appeared. You press it and you select all substances
that you want to be subject to this settling velocity and you give as weight coefficient 1.0.

Remarks:
⋄ The array-space that is available for the result of your process Fortran routine generally

is equal to the amount of computational elements. By pressing the button acts on
exchanges, the array space becomes as large as the number of exchanges.

⋄ By the selection of ‘velocity’ in step 2, you cause this term to be added to the water
velocity in the advection diffusion solver for this substance. This means that the term
is subject to all numerics of the selected advection diffusion solver. This is especially
important for settling velocities, since they may be so high that explicit schemes along
the vertical would require a much to small computational time step. You solve this
problem by selection for you simulation of one of the numerical scheme’s that deal with
the vertical in an implicit way.

⋄ Had you selected a ‘diffusion’ type term, the result would be added to the diffusion
term in the advection diffusion equation and again the term was taken into account by
the advection diffusion solver. If you selected neither a velocity nor a diffusion type
of term, then the term will not be added to the advection diffusion equation, but it will
just be there, to serve as input for other processes. The latter situation can e.g. be
the case for an item as ‘the density gradient at a cross-sectional area’. This density
gradient can then be used in commonly used formula’s for reduced vertical diffusion
due to stratification with as net result a vertical diffusion type of term. It is however
also possible to specify a velocity of salmon towards a freshwater source if you first
computed the salinity gradient as cross-sections.

5.7 Further performance improvement

If we look at the BOD-Decay formula

∂BOD

∂t
= −k1 ·BOD (5.4)

then the decay constant k1 is a constant. In reality it is a bacterial process that is temperature
dependent with

k1 = k20 · T (T−20)
coef . (5.5)

Here Tcoef is the temperature dependency (generally 1.047 for decay of organic matter), T
the temperature in degrees centigrade and k20 the decay constant at 20 ◦C. This formula-
tion is easily included in the source code with help of the previously given examples. If the
temperature T is not modelled, but specified as a constant for the whole river or estuary,
then straight forward programming will result in the evaluation of the same T

(T−20)
coef for every

computational element and powers with real numbers are computation time consuming. In
Figure 5.5 a code example of temperature dependent BOD decay is given that evaluates the
temperature function only once for the whole area if the temperature is the same everywhere.
It makes use of the property that the INCREM entry for items is 0 if an item is specified as a
spatially constant (e.g. as a single time function for the whole area). The code also works if
T is different per location. That is important, never lean on limitations, always insert general
and generic code into your library, the you will benefit most from its generality.

Deltares 49 of 59

DRAF
T

Open Processes Library, User Manual

Figure 5.5: Subroutine for temperature dependent BOD Decay with optimisations

50 of 59 Deltares

DRAF
T

Advanced programming

5.8 Retrieving information from the hydrodynamics

In earlier sections of this chapter we showed how we could derive the segment velocity, the
segment depth and the total water depth from the terms that were delivered by the hydrody-
namic model. Here an overview is given of all the terms that are available from the hydrody-
namic model. There are 11 items in the processes library that are always present and that
can be used. They are listed in Table 5.1.

Table 5.1: Items that are available to the process library from the system

Item Dimension Meaning

VOLUME NOSEG The volumes of the computational elements [m3]

FLOW NOQ The flows between the computational elements [m3/s]

XAREA NOQ The exchange surfaces between computational elements [m2]

XLENFROM NOQ The distance of mid of ‘from’ element to exchange surface [m]

XLENTO NOQ The distance of mid of ‘to’ element to exchange surface [m]

SURF NOSEG The horizontal surface area of the computational elements

IDT 1 The system time step for the Advection Diffusion solver [s]

DELT 1 The system time step fro water quality processes [d]

ITIME 1 The time in simulation from reference [s]

ITSTOP 1 The simulation start time from reference [s]

ITSTRT 1 The simulation stop time from reference [s]

If one or more of the items of Table 5.1 are specified as input for a process the system
considers them as resolved by the model. So you can assume them to be available. It is
also possible to obtain other information from the hydrodynamic modelling part. If you want to
use e.g. the bottom shear stress in the Delft3D environment, then you define an input to your
process with this name and at modelling time you select the item to be specified as user input.
In the Delft3D user interface you couple the datafile containing this bottom shear stress to the
item with this name of your processes library and you can use the item. The difference with
the items in Table 5.1 is that those in Table 5.1 are always present, both in the 1D-2D SOBEK
environment and in the Delft3D environment. The availability of other items depends on the
setting of your hydrodynamic run. If you model e.g. thermal stratification with your Delft3D
hydrodynamic model, then you can specify the temperature result of that model as item for
your Delft3D water quality simulation. If you do not model temperature with the hydrodynamic
model, then you will have to model temperature with your water quality model, or just specify
a temperature time function for the area in the user interface.

We however need to obtain the velocity and the depth and Figures 5.1 and 5.2 give routines
that do that job.

Deltares 51 of 59

DRAF
T

Open Processes Library, User Manual

5.9 Derived entities

Processes and their input and output are only displayed in the user interface if they affect
substances in the model. There however also may be derived quantities (e.g. Secchi-depth
as result of available particulates in the water or Chlorophyll as result of Algae-Carbon in
the water) that are not used in that form by the substances. In that case they would be
‘unreachable’ for the user in the user interface. You can prevent this by specifying those
derived properties as a flux and let them act on all substances where they may be associated
with. As weighing factor for the flux you use however 0.0, so no actual flux takes place. The
process however now appears in the list of processes that can be switched on for a substance
and the Secchi Depth and the Chlorophyll can be selected as output variable for graphical
post-processing. It is one of the very few tricks that is required in the furthermore very straight
forward definition of substances, processes, fluxes and input and output items.

52 of 59 Deltares

DRAF
T

6 Using waqpb export and import tools

6.1 Background

An alternative method to specify processes

As described in earlier chapters OpenPLCT can be used to define new processes, based on
a DLL created from Fortran code and a process definition file. This method is ideally suited
for less experienced users, but only allows small interventions and simpler processes.

An alternative method is to regenerate the process definition files including the new or mod-
ified process(es). This also allows for changing input parameters of existing processes. The
waqpb_export and waqpb_import tools allow the user to do this. These tools have been
made generally available (versions of 2022 and later). This method is recommended for ex-
perienced users only. This functionality is currently only supported under Windows. Note that
the process definition files which are generated under Windows can be used on Linux, and
vice versa.

6.2 Workflow

The data for the process definition files are contained in the <*.csv> files, which are present
in the x64/dwaq/default/csvFiles folder. The process definition files are located inside the
x64/dwaq/default folder.

The workflow in generating a new process definition file is:

1 navigate to the x64/dwaq/scripts folder.
2 open the <export_procdef_csvfiles.bat> script in a text editor
3 change the variable serial to a new value. Usually this is the date in the format yyyymmdd,

possible followed by an iteration number.
4 run the script <export_procdef_csvfiles.bat>, either in a terminal or command prompt,

which calls the waqpb_export tool. This script will export the <proc_def> files and cre-
ate an ASCII file (<procesm.asc>) containing a list of all the processes and associated
parameters.

5 copy the ASCII file <procesm.asc> to a new file, called <proces.asc>.
6 edit the new file <proces.asc> (add the desired new process, modify an existing process,

etc.).
7 run the script <import_procesasc_changes.bat>, either in a terminal or command prompt,

which calls the waqpb_import tool. This script will import the changes made in the <pro-
ces.asc> file.

8 run the script <export_procdef_csvfiles.bat> again, either in a terminal or command prompt.
This will export the <proc_def> files and create a new <procesm.asc> ASCII file. The
<proc_def> file in the x64/dwaq/default folder is directly updated and ready to be used for
a new simulation.

9 compare the <procesm.asc> and <proces.asc> files to see if the changes are correctly
included.

Deltares 53 of 59

DRAF
T

Open Processes Library, User Manual

What if you make a mistake?

In the folder x64/dwaq/installation_default contains the original <*.csv> and <proc_def> files
as backup. If you make a mistake while adapting the process definition files to your re-
quirements, you can always return to the original state by copying all the files from the
x64/dwaq/installation_default folder to the x64/dwaq/default folder. Note that then all changes
will be lost.

The installation_default folder can also be used for comparing the adapted <.csv> files with
the original <.csv> files, to see how the changes made in the <proces.asc> file are reflected
in the process definition database.

Other remarks

It is also possible to edit the <*.csv> files directly. This is not for the faint-hearted, since the
database can be rather ambiguous, and its workings mysterious. It does allow for even greater
control.

Note that some changes in the <proces.asc> may not be not incorporated in the new version
of process definition files by the waqpb_export and waqpb_import tools, as the <.csv> files
will updated, rather than rewritten from scratch. An example of this is changing a default value
to a different value. Comparing the <procesm.asc> and <proces.asc> files after rerunning
the <export_procdef_csvfiles.bat> script will in such as case show clear differences, since the
modified values are not reflected in the <procesm.asc> file. In such a case it is necessary to
edit the <.csv> files directly.

54 of 59 Deltares

DRAF
T

References

O’ Connor, D. and W. Dobbins, 1956. “The mechanism of reaeration in natural streams. ASCE.
82 (no. SA6): 469.” J.San.Eng. ASCE 82 (no. SA6): 469.

Streeter, H. and E. Phelps, 1925. Study of the pollution and natural purification of the Ohio
river. III. Factors Concerned in the Phenomena of Oxidation and Reaeration. Tech. Rep.
U.S. Public Health Serv., Pub. Health Bulletin No. 146, U.S. Public Health Service, Wash-
ington D.C. (reprinted 1958).

Deltares 55 of 59

DRAF
T

Open Processes Library, User Manual

56 of 59 Deltares

DRAF
T

Photo by: Mathilde Matthijsse, www.zeelandonderwater.nl

Dutch Delta SystemsDutch Delta Systems

PO Box 177
2600 MH Delft
Boussinesqweg 1
2629 HV Delft
The Netherlands

DRAF
T

DRAF
T

	List of Tables
	List of Figures
	1 A guide to this manual
	1.1 Introduction
	1.2 Manual version and revisions
	1.3 Typographical conventions

	2 Introduction to Open PLCT
	2.1 Background
	2.2 Concepts

	3 Getting started
	3.1 Starting Delft3D
	3.2 Getting into the OpenPLCT
	3.3 Exiting OpenPLCT

	4 Tutorial
	4.1 How to start the developer environment
	4.2 Create substance groups
	4.3 Create substances
	4.4 Create processes
	4.5 Setting up the stoichiometry
	4.6 Generating computer code
	4.7 Make a Windows DLL from your source files
	4.8 Incorporation of your new process library database
	4.8.1 Delft3D
	4.8.2 SOBEK

	4.9 Modify an existing process library
	4.9.1 Towards advanced features

	5 Advanced programming
	5.1 Use hydrodynamic results to compute depth
	5.2 Use hydrodynamic results to compute the velocity
	5.3 Compute the total water depth
	5.4 The feature or segment property
	5.5 Settling from the water column towards the bottom
	5.6 The vertical velocity in 3D models
	5.7 Further performance improvement
	5.8 Retrieving information from the hydrodynamics
	5.9 Derived entities

	6 Using waqpb export and import tools
	6.1 Background
	6.2 Workflow

	References

