
Delft3D fM Suite

Simulation software for safe, sustainable and future deltas

Technical Reference Manual

Delta ShellDRAF
T

DRAF
T

DRAF
T

Delta Shell

Technical Reference Manual

Released for:
Delft3D FM Suite 2023
D-HYDRO Suite 2023
SOBEK Suite 3.7

Version: 0.2
Revision: 78359

9 March 2024

DRAF
T

Delta Shell, Technical Reference Manual

Published and printed by:
Deltares
Boussinesqweg 1
2629 HV Delft
P.O. 177
2600 MH Delft
The Netherlands

telephone: +31 88 335 82 73
e-mail: Information
www: Deltares

For sales contact:
telephone: +31 88 335 81 88
e-mail: Sales
www: Sales & Support

For support contact:
telephone: +31 88 335 81 00
e-mail: Support
www: Sales & Support

Copyright © 2024 Deltares
All rights reserved. No part of this document may be reproduced in any form by print, photo
print, photo copy, microfilm or any other means, without written permission from the publisher:
Deltares.

mailto: info@deltares.nl
https://www.deltares.nl
mailto: software@deltares.nl
https://www.deltares.nl/en/software-and-data
mailto: software.support@deltares.nl
https://www.deltares.nl/en/software-and-data

DRAF
T

Contents

Contents

List of Figures vii

List of To Do’s ix

1 Introduction 1
1.1 Overview of the directory structure . 1
1.2 Plugins . 1

2 The Delta Shell application 5
2.1 Introduction . 5
2.2 Project and project items . 6
2.3 Activities and models . 6
2.4 Hydro models and regions . 8
2.5 Data items and model coupling . 9
2.6 Functions and spatial data . 9

2.6.1 Functions . 11
2.6.2 Coverages . 11
2.6.3 Function filters . 11
2.6.4 Evaluating a function . 12
2.6.5 Function store . 12

2.7 Model validation . 12

3 The Delta Shell GUI 15
3.1 Overview . 15
3.2 The ribbon . 16
3.3 Docking . 16
3.4 Windows and views . 17
3.5 The GUI Context Manager . 19
3.6 Treeviews . 19
3.7 Project explorer . 20
3.8 Property grid . 20

3.8.1 Static declaration of properties . 21
3.8.2 Dynamic declaration of properties 22
3.8.3 Property categories and read-only properties 22

3.9 Time navigator . 23

4 Eventing 25
4.1 PostSharp in Delta Shell . 25
4.2 Undo/redo . 27
4.3 Accessing the GUI thread from a worker thread 29

5 Persistence 33
5.1 History of persistence in Delta Shell . 33
5.2 Persistence with nHibernate . 34

5.2.1 Overall set-up . 34
5.2.2 Mapping files . 36
5.2.3 How to enable or disable lazy loading 36
5.2.4 How to solve: sqlite - max 64 tables in join 36
5.2.5 How to use cascades . 37
5.2.6 How to create a legacy mapping for a class where one property has

changed . 39
5.2.7 How to create a legacy mapping for a class that has been split up . . . 40
5.2.8 How to create a legacy mapping for a class that has been merged . . 42

Deltares iii

DRAF
T

Delta Shell, Technical Reference Manual

5.2.9 How to create a legacy mapping for a class that has been changed to
a hierarchy of classes . 43

5.2.10 How to deal with class renames or changes of namespace 45
5.3 File-based persistence . 45

6 Geospatial data and visualisation 47
6.1 GeoAPI . 47
6.2 NetTopologySuite . 47
6.3 SharpMap . 47
6.4 The central map and its panel . 47
6.5 Spatial operations . 47

6.5.1 Introduction . 47
6.5.2 Object model . 48
6.5.3 Framework Embedding . 49
6.5.4 Spatial Operations . 50
6.5.5 GUI . 51
6.5.6 Tests . 52

7 Other topics 55
7.1 Tables and graphs . 55
7.2 Basic Modeling Interface (BMI) . 55
7.3 Remote Instance Container . 55
7.4 NetCDF . 55
7.5 Scripting using Python . 55

8 Programming help 57
8.1 NuGet packages . 57
8.2 32-bit vs 64-bit . 57
8.3 Build process . 57
8.4 Creating an installer . 57
8.5 Testing . 57
8.6 Code conventions . 57
8.7 Localisation . 57
8.8 Licensing . 57

9 Plugins 59
9.1 Flexible Mesh . 59

9.1.1 Introduction . 59
9.1.1.1 Overview . 59

9.1.2 The FlexibleMeshModelApi Class 60
9.1.3 The File System . 61
9.1.4 The Unstructured Grid . 62
9.1.5 Boundary conditions . 62
9.1.6 GUI . 63
9.1.7 Tests . 63

A Tutorial: start a new plugin 65
A.1 Add new plugin . 65

A.1.1 Edit AssemblyInfo.cs . 65
A.1.2 Edit project’s csproj file . 65
A.1.3 Add code . 66
A.1.4 Result so far . 67

A.2 Import time series from WaterML2 files . 67
A.2.1 Create a new importer class . 67
A.2.2 Register the importer in the application plugin class 70

iv Deltares

DRAF
T

Contents

A.2.3 Create test data . 70
A.2.4 Test importer . 70

A.3 Create a simple hydrological model . 70
A.3.1 Create a new model class . 70
A.3.2 Register the model in the application plugin class 73
A.3.3 Test model functionality . 73

A.4 Customize model properties . 73
A.4.1 Create a new object properties class 73
A.4.2 Register the object properties in the gui plugin class 73
A.4.3 Test properties . 73

A.5 Show model data on a map . 73
A.5.1 Create a new map layer provider 73
A.5.2 Register the map layer provider in the gui plugin class 73
A.5.3 Test map layer provider . 73

A.6 Set up a custom model view . 73
A.6.1 Create a new view . 73
A.6.2 Register the view in the gui plugin class 73
A.6.3 Test view . 73

A.7 Create a ribbon button . 73
A.7.1 Create a new gui command . 73
A.7.2 Create a new ribbon control . 73
A.7.3 Register the ribbon control in the gui plugin class 73
A.7.4 Test ribbon button . 74

A.8 WaterML2 test data . 74

Deltares v

DRAF
T

Delta Shell, Technical Reference Manual

vi Deltares

DRAF
T

List of Figures

List of Figures

1.1 Class diagrams for plugins. 3

2.1 Class diagram for the Delta Shell application and its services. 5
2.2 Class diagram for Project and ProjectItem. 6
2.3 Depicted is a sample script that gives an overview of the domain model of the

current project, including some sample output. 7
2.4 Class diagram for activities and models. 8
2.5 Class diagram around IHydroModel and the integrated model: HydroModel.

Notice that these classes are having somewhat confusing names: an IHydro-
Model is a model that contains an hydro region, whereas the HydroModel is
a class that represents an integrated model, which is in turn a set of mod-
els. In other words, all HydroModels implement IHydroModel, but other (non-
composite) models might implement this interface as well. 9

2.6 Class diagram for the Hydro region. 10
2.7 Class diagram for IFunction and related interfaces and classes. 10
2.8 Class diagram for model validation. 13

3.1 Class diagram for the Delta Shell GUI. 15
3.2 Class diagram for the Delta Shell main window. 16
3.3 Class diagram for the docking mechanism. 16
3.4 Class diagram for the ViewResolver. 17
3.5 Class diagram for different types of views. ProjectItemMapView has been

included in this diagram because it plays a central role in the Delta Shell GUI. 18
3.6 Class diagram for TreeViews. For readability, not all entries have been speci-

fied. 19
3.7 Class diagram for the Property Grid. 21
3.8 Class diagram for ITimeNavigatable. ProjectItemMapView and NetworkSide-

View are shown as examples of classes that implement ITimeNavigatable. . . 23

4.1 Simple example of three classes with composition and aggregation relations. . 25
4.2 Eventing using the Delta Shell Postsharp solution, based on the class diagram

in Figure 4.1. 26
4.3 This code snippet shows how to subscribe to Postsharp-generated events and

how to distinguish ‘normal’ effects from side effects. 30
4.4 Code snippet to illustrate the usage of InvokeRequired. 31

5.1 Class diagram illustrating how a Delta Shell project contains both ORM and
file-based persistence. 33

5.2 Class diagram illustrating how the nHibernate infrastructure is encapsulated in
the DeltaShellApplication object. In order to keep this picture understandable,
some interface classes have been omitted. 34

5.3 Class diagram of NHibernateRepository, one of the central classes in Delta
Shell. 35

5.4 Example of how a class can be split up. 40
5.5 Example of how two classes can be merged. 42
5.6 Example of how a class can be split up into one base class and two derived

classes. Some of the properties in the original class need to be divided over
the new derived classes. 43

5.7 Class diagram describing file-based persistence. The given classes on the
right of the diagram are examples: more classes implement the IFileBased
interface. 46

6.1 UML diagram of spatial operation and operation sets 48

Deltares vii

DRAF
T

Delta Shell, Technical Reference Manual

6.2 Three-operation chain . 48
6.3 Three-operation set with subset topology 49
6.4 Spatial operation inheritance tree. 51
6.5 Class diagram on spatial operations. 52
6.6 Class diagram on how spatial operations are integrated into the GUI. 53

9.1 Global data model of the Flexible Mesh model in DeltaShell. 60
9.2 Remote and actual implementations of the IFlexibleMeshModelApi. 60
9.3 Control structure of the ReloadGrid implementation 62
9.4 Boundary condition object model in FMSuite 63

viii Deltares

DRAF
T

List of To Do’s

List of To Do’s
A.1 see section TODO . 66

Deltares ix

DRAF
T

Delta Shell, Technical Reference Manual

x Deltares

DRAF
T

1 Introduction

In this chapter, a superficial overview of Delta Shell will be given. First, the structure of
the entire solution will be discussed. Because the plugins are a central part of the system
architecture, this aspect will be introduced in this chapter as well. The next two chapters will
focus on the Delta Shell Application and GUI, respectively.

1.1 Overview of the directory structure

The entire directory is divided into a number of folders:

Common This solution folder is for all components that can be re-used by different appli-
cations. For instance, Delta Shell uses a number of libraries for geographical
representations (GeoAPI, SharpMap, NetTopologySuite; see chapter 6). Other
Common assemblies are: the Remote Instance Server (see section 7.3), Delft-
Tools.Controls and DelftTools.Functions (see section 2.6).

Delta Shell This is the folder that is meant for the Delta Shell application itself. It includes
the ’Delta Shell plugins’: plugins that are distributed with all products that rely on
the Delta Shell framework. In principle, the Common and Delta Shell folders
together constitute what is commonly referred to as the ’Delta Shell Framework’.
In this folder, there is one Visual Studio solution for the framework, which does
not include any plugins. There is no single solution that includes all source
code.

Products This folder contains the plugins for the individual products. A product can be
seen as the combination of the framework with a certain set of plugins. Each
product has a separate installer. At the time of writing, the largest product is
NGHS1. Other products include: MorphAn, Habitat and WFD Explorer. In the
individual product folder, several solutions reside that include the Delta Shell
Framework using NuGet packages (without its source code).

There are two start-up projects available: Delta Shell GUI and the Delta Shell Console. Delta
Shell Console only starts the Application, whereas Delta Shell GUI starts the entire GUI, which
in turn contains the Application. The Delta Shell Console will also only load the application
plugins, whereas the GUI will load all plugins (both GUI and application plugins).

1.2 Plugins

A Delta Shell installation consists of two directories: bin and plugins. When Delta Shell is
started, one of the first things it does is to search the plugins folder for assemblies that are
recognised as Delta Shell plugins. This plugin architecture has the advantage that it is straight-
forward to make different distributions (e.g. SOBEK), with different sets of plugins. The plugins
are mostly considered to be independent of each other, meaning that normally you would not
want one plugin to reference another plugin. There are a few exceptions to this rule:

⋄ You can reference ’Delta Shell’ plugins: plugins that are always installed. Examples of
such plugins are the Project Explorer and the NetCDF plugin.

⋄ A GUI plugin can reference an application plugin. For instance, the Flexible Mesh GUI
plugin references the Flexible Mesh application plugin.

⋄ If there are common functionalities between two plugins, you can create a ’Common’
plugin. For instance, both Waves and Flexible Mesh reference the FMSuite Common
plugin.

1The Next Generation Hydro Software project (2010-2015) was the project during which the Delta Shell Frame-
work created.

Deltares 1 of 81

DRAF
T

Delta Shell, Technical Reference Manual

The plugins are recognised by means of the AddinManager from Mono.Addins.dll2,
which is wrapped in the static PluginManager class in DeltaShell.Core. For a class to be
recognised as a Delta Shell plugin, it needs to be decorated as follows:

namespace DeltaShell.Plugins.ProjectExplorer
{

[Extension(typeof(IPlugin))]
public class ProjectExplorerGuiPlugin : GuiPlugin
{

...
}

}

The extension point is found as follows:

[TypeExtensionPoint]
public interface IPlugin
{

...
}

The AssemblyInfo.cs file needs the following declarations:

using Mono.Addins;

[assembly: Addin]
[assembly: AddinDependency("DeltaShellApplication", "1.0")]

The class that is responsible for keeping a reference to all plugins is PluginManager. A
plugin developer normally does not need this class: registering it as either an application or
GUI plugin is sufficient. The class diagram around the plugin architecture is depicted in figure
1.1. Here, a distinction is being made between GUI plugins and application plugins. The
application plugins contain the domain objects of models, whereas the GUI plugins should
only contain graphical objects, such as windows and panels. When the Console version of
Delta Shell is started, only application plugins will be loaded.

2More information on Mono Addins: http://monoaddins.codeplex.com/

2 of 81 Deltares

http://monoaddins.codeplex.com/

DRAF
T

Introduction

ApplicationPlugin

+ Application: IApplication

+ GetModelInfos(): IEnumerable<ModelInfo>
+ GetDataItemInfos(): IEnumerable<DataItemInfo>
+ GetFileImporters(): IEnumerable<IFileImporter>
+ GetFileExporters(): IEnumerable<IFileExporter>
+ GetPersistentAssemblies(): IEnumerable<Assembly>

GuiPlugin

+ Gui: IGui
+ RibbonCommandHandler: IRibbonCommandHandler
+ OptionsControls: IEnumerable<IOptionsControl>
+ MapLayerProvider: IMapLayerProvider

+ GetPropertyInfos(): IEnumerable<PropertyInfo>
+ GetProjectTreeViewNodePresenters(): IEnumerable<ITreeNodePresenter>
+ GetViewInfoObjects(): IEnumerable<ViewInfo>
+ OnViewAdded(View: IView)
+ OnViewRemoved(View: IView)
+ OnActiveViewChanged(View: IView)
+ GetContextMenuItem(sender: object, data: object): IMenuItem
+ OnDragDrop(source: object, target: object)
+ CanDrop(source: object, target: object): bool
+ CanPaste(item: IProjectItem, container: IProjectItem): bool
+ CanCopy(item: IProjectItem): bool
+ CanCut(item: IProjectItem): bool
+ CanDelete(item: IProjectItem): bool
+ CanLink(item: IDataItem): bool
+ CanUnlink(item: IDataItem): bool

PluginManager

- AllPlugins: List<IPlugin>

+ RegisterAdditionalPlugins (plugins: IEnumberable<IPlugin>)
+ Initialize (pluginsDirectory: string)
+ GetPlugins<T:IPlugin> (): IEnumerable<T>
+ Reset ()

«interface» IPlugin

+ Name: string
+ DisplayName: string
+ Description: string
+ Version: string
+ IsActive: bool
+ Image: Image
+ Resources: ResourceManager
+ DependentPluginNames: string[]

+ Activate()
+ Deactivate()
+ GetPersistentAssemblies(): IEnumerable<Assembly>

1 0..n

Figure 1.1: Class diagrams for plugins.

Deltares 3 of 81

DRAF
T

Delta Shell, Technical Reference Manual

4 of 81 Deltares

DRAF
T

2 The Delta Shell application

As discussed in the previous chapter, Delta Shell makes a clear distinction between code that
is related to the object model and code that has to do with the GUI. This chapter will focus
on the application part of the codebase. We shall explain what the general shape of a Delta
Shell project is, and how it can be composed of models and other activities. Data items form
an integral part of projects, because it facilitates sharing of data between models, and will
be disussed in section 2.5. An introduction to a few available mathematical building blocks
(functions, coverages, variables, multi-dimensional arrays) will be given in section 2.6. Last,
validation of models will be touched upon briefly.

2.1 Introduction

«interface» IDataItemService

+ ProjectService: IProjectService
+ ModelService: IModelService

+ IsDataItemValid(dataItem: IDataItem): bool
+ GetDataItemByValue(project: Project, value: object): IDataItem
+ GetValidLinkOptions(project: Project, source: IProjectItem, target: IProjectItem):
 List<Tuple<IDataItem, IDataItem»

«interface» IModelService

+ HasParent(model: IModel)
+ IsLinkedBy(model: IModel)
+ GetModelsLinkedBy(model: IModel): IModel[]
+ StopModel(model: IModel, app: IApplication)
+ GetRootModel(model: IModel): IModel
+ GetModelsByData(project: Project, data: object): IEnumerable<IModel>
+ GetModelByDataItem(project: Project, dataItem: IDataItem): IModel
+ GetAllModels(folder: Folder): IEnumerable<IModel>

«interface» IProjectService

+ ProjectDataDirectory: string
+ ProjectFileBasedItemRepository: IProjectFileBasedItemRepository
+ ProjectRepositoryFactory: IProjectRepositoryFactory

+ CreateAndGetExternalDataDirectory(basePath: string)
+ Create(path: string): Project
+ Open(path: string): Project
+ Save(project: Project)
+ Close(project: Project)
+ Export(projectItem: IProjectItem, targetProjectRepositoryPath: string,
 includeLinkedFiles: bool, clearModelOutputOnExport: bool)
+ Clone(): IProjectService

DeltaShellApplication

«interface» IApplication

+ Plugins: IList<ApplicationPlugins>
+ Project: Project
+ ActivityRunner: IActivityRunner
+ Settings: NameValueCollection
+ UserSettings: ApplicationSettingsBase
+ Resources: ResourceManager
+ ProjectService: IProjectService
+ ModelService: IModelService
+ DataItemService: IDataItemService
+ FileImporters: IEnumerable<IFileImporter>
+ FileExporters: IEnumerable<IFileExporter>
+ ProjectRepositoryFactory: IProjectRepositoryFactory
+ ProjectDataDirectory: string
+ ProjectFilePath: string
+ Version: string
+ PluginVersions: string
+ ScriptRunner: IScriptRunner

+ GetPluginForType(type: Type): ApplicationPlugin
+ IsActivityRunning(): bool
+ GetUserSettingsDirectoryPath(): string
+ Run()
+ Run(projectPath: string)
+ Exit()
+ RunActivity(activity: IActivity)
+ RunActivityInBackground(activity: IActivity)
+ StopActivity(activity: IActivity)
+ CreateNewProject()
+ OpenProject(path: string)
+ SaveProjectAs(path: string)
+ SaveProject()

1 1

1 1

1 1

Figure 2.1: Class diagram for the Delta Shell application and its services.

The class diagram for IApplication is depicted in Figure 2.1. It contains a list of application
plugins, which is filled once the application starts. The Project is the object that is persisted
eventually in a .dsproj file, and most operations on the project are handled via the ProjectSer-
vice. The project will contain one or more models, which can be run in the ActivityRunner. All
models are not the only type of activities: importers and exporters are other types of activities.
The FileImporters and FileExporters are collected via all plugins that expose such importers
and exporters. Python scripts, which interact directly with the Delta Shell Framework API, can
be run through the ScriptRunner (see section 7.5). IModelService and IDataItemService are
services that are used for coupling models.

Deltares 5 of 81

DRAF
T

Delta Shell, Technical Reference Manual

«interface» IDataItem

(...)

Folder

+ Items: IEventedList<IProjectItem>
+ Folders: IEnumerable<Folder>
+ Models: IEnumerable<IModel>
+ DataItems: IEnumerable<IDataItem>

+ Add(o: object)
+ Contains(o: object): bool

«interface» IActivity

(...)

«interface» IProjectItem

(empty interface)

«interface» IItemContainer

+ GetDirectChildren(): IEnumerable<object>

Project

+ Name: string
+ Description: string
+ FileFormatVersion: string
+ RootFolder: Folder
+ Size: int
+ CreateTime: DateTime
+ ChangeTime: DateTime
+ IsTemporary: bool
+ IsMigrated: bool
+ ViewContextManager: object

1

1

1

0..n

Figure 2.2: Class diagram for Project and ProjectItem.

2.2 Project and project items

A class diagram of projects and its subparts can be seen in Figure 2.2. Every Project contains
exactly one (root) Folder, which in turn contains a number of other folders (recursive!), data
items and activities (grouped under a category ‘project items’). Activities can contain other ac-
tivities as well (‘composite activities’), and activities can contain data items. Activities/models
and data items will be discussed in more detail in section 2.3 and section 2.5, respectively.

Because the Project object is the root for the entire composition of domain objects, it is im-
portant how all domain objects relate to Project. In Figure 2.3, a simple script is presented,
that recursively walks through all folders, data items and activities. Also, sample output for
this script is shown. This script can help to get a good understanding of the object model at
any time, while running Delta Shell.

2.3 Activities and models

In Delta Shell, there is a separate service to run activities in the background: the ActivityRun-
ner (see Figure 2.4). These activities will run in a separate thread normally. In some cases,
even a new process will be started, but that is up to the activity itself. When the activity runner
is active, a modal pop-up will appear to indicate that one or more activities are running. The
main application can not be operated by the user when the activity runs. Internally, the activity
runner uses a FIFO queue to determine the order of the activities.

Activities are divided into several stages. An activity reaches the following stages if it proceeds
normally (there is also a Failed stage in case of errors):

⋄ None: before the initialisation
⋄ Initializing: during the initialisation
⋄ Initialized: after the initialisation
⋄ Executing: during the execution (of one step)
⋄ Executed: after the execution (of one step)
⋄ Done: after the execution (of all steps)
⋄ Finishing: during the finalisation
⋄ Finished: after the finalisation
⋄ Cleaning: during the clean-up

6 of 81 Deltares

DRAF
T

The Delta Shell application

def write_tree(f, node, indent) :
f.write(" " * indent + str(node.ToString()) + " : " + str(type(node)) + '\n')
if "GetDirectChildren" in dir(node) :

for childNode in node.GetDirectChildren() :
write_tree(f, childNode, indent+4)

f = open("d:/tree.txt", 'w')
write_tree(f, CurrentProject, 0)
f.close()

Project1 : <type 'Project'>
<root> : <type 'Folder'>

Integrated Model : <type 'HydroModel'>
start time : <type 'DataItem'>

start time : <type 'Parameter[DateTime]'>
stop time : <type 'DataItem'>

stop time : <type 'Parameter[DateTime]'>
Region : <type 'DataItem'>

DelftTools.Hydro.HydroRegion : <type 'HydroRegion'>
Network : <type 'HydroNetwork'>

Channel1 : <type 'Channel'>
LateralSource1 : <type 'LateralSource'>
ObservationPoint1 : <type 'ObservationPoint'>
Weir1 : <type 'Weir'>
StructureFeature : <type 'CompositeBranchStructure'>

Node001 : <type 'HydroNode'>
Node002 : <type 'HydroNode'>
Main : <type 'CrossSectionSectionType'>

DelftTools.Hydro.DrainageBasin : <type 'DrainageBasin'>
Catchment1 : <type 'Catchment'>

HydroLink1 (Catchment1 -> LateralSource1) : <type 'HydroLink'>
Network : <type 'DataItem'>

(convertor) reference to Network :
<type 'AggregationValueConverter'>

Basin : <type 'DataItem'>
(convertor) reference to DelftTools.Hydro.DrainageBasin :

<type 'AggregationValueConverter'>
Flow1D : <type 'WaterFlowModel1D'>

start time : <type 'DataItem'>
start time : <type 'Parameter[DateTime]'>

stop time : <type 'DataItem'>
stop time : <type 'Parameter[DateTime]'>

Figure 2.3: Depicted is a sample script that gives an overview of the domain model of the
current project, including some sample output.

Deltares 7 of 81

DRAF
T

Delta Shell, Technical Reference Manual

ParallelActivity

«interface»
ITimeDependentModel

+ StartTime: DateTime
+ StopTime: DateTime
+ TimeStep: TimeSpan
+ CurrentTime: DateTime
+ UseRestart: bool
+ WriteRestart: bool

CompositeModel SequentialActivity

CompositeActivity

Activity«interface» ICompositeActivity

+ Activities: IEventedList<IActivity>
+ CurrentWorkflow: ICompositeActivity
+ ReadOnly: bool

«interface» IModel

+ DataItems: IEventedList<IDataItem>
+ AllDataItems: IEventedList<IDataItem>
+ IsFileBased: bool
+ explicitWorkingDirectory: string

«interface» IActivity

+ Status: ActivityStatus
+ ProgressText: string

+ Initialize()
+ Execute()
+ Cancel()
+ Finish()
+ Cleanup()

«event» StatusChanged

«interface» IActivityRunner

+ Activities: IEventedList<IActivity>
+ IsRunning: bool

+ IsRunningActivity(activity: IActivity)
+ Enqueue(activity: IActivity)
+ Cancel(activity: IActivity)
+ CancelAll()

1 0..n

Figure 2.4: Class diagram for activities and models.

⋄ Cleaned: after the clean-up

Most time-dependent models use a scheme of using the ‘execution’ step for every time step.
This part is called repeatedly, until the ‘current time’ has reached the ‘stop time’, after which
the model will finish. There is a distinction between ‘finishing up’ and ‘cleaning up’: when
an exception occurs during initialisation, execution or finalisation of the activity, the clean-
up procedure will be called. This stage can therefore safely be used for implementing the
IDisposable interface, to avoid memory leaks.

Typical workflows in Delta Shell that are exposed as an Activity include the running of a model
and importing/exporting data from/to files. Models are activities appended with properties
that accomodate running models individually and coupling models together. If an activity
is composed of several sub-activities, a composite activity can be used, which, if applied
recursively, can form a tree of activities. Even though the name suggests it, a ParallelActivity
is not entirely parallel (as in: parallel threads), but means that the ‘execute’ steps of the
activities are performed alternately. This gives the possibility for the pseudo-parallel models
to exchange information after each time step. The main instrument to share data between
such coupled models are data items, to be discussed in section 2.5.

2.4 Hydro models and regions

Figure 2.5 shows a number of objects that are frequently used in the line of NGHS products1.
The central concept that was intended to be implemented was integrated modelling: a stan-
dardised integration of different models, which would be able to seamlessly share information
while running the models. The implementation of the integrated model is captured in Hydro-
Model. This composite, time-dependent model can hold several types of models. Because
the different plugin assemblies are not allowed to reference each other (see section 1.2), an
omniscient Python script is used to bind the different types of models together: HydroModel-
Builder.py. It can be informative to take a look at this script to understand which models can

1It is actually unclear whether these objects are actually part of the Delta Shell Framework. However, the NGHS
product line form a large part of the Delta Shell plugins, currently, so this part will be discussed superficially.

8 of 81 Deltares

DRAF
T

The Delta Shell application

«interface»
ICompositeActivity

TimeDependentModelBase

RainfallRunoffModel

«interface»
IRainfallRunoffModel

WaveModel

WaterFlowFMModelWaterFlowModel1D

«interface» IHydroModel

+ Region: IHydroRegion

HydroModel

Figure 2.5: Class diagram around IHydroModel and the integrated model: HydroModel.
Notice that these classes are having somewhat confusing names: an IHydro-
Model is a model that contains an hydro region, whereas the HydroModel is
a class that represents an integrated model, which is in turn a set of mod-
els. In other words, all HydroModels implement IHydroModel, but other (non-
composite) models might implement this interface as well.

be linked together and which can not. In this setting, a workflow is a set-up of parallel and
sequential composite models, which are pre-defined in the HydroModel builder script as well.

According to the Delta Shell philosophy, model data is separate from GIS2 data. The idea
behind this is that GIS data is likely to be acquired from external sources (e.g. ArcGIS), and
remains mostly constant across models or scenarios. The GIS data of NGHS models are
represented in the ‘hydro region’. Although different models do generally not have access to
each other’s model data, all models do have access to all GIS data.

The class diagram for the hydro region is depicted in Figure 2.6. Depending on the model, the
hydro region can contain three types of subregions: Network (for Flow1D models), Drainage-
Basin (for Rainfall-Runoff models) and HydroArea (for Flexible Mesh models). A HydroLink
object is used to link two IHydroObjects from (usually) different IHydroRegions. An example
of the use of HydroLinks is the discharge that is transferred from a Rainfall-Runoff catchment
to a Flow1D channel.

2.5 Data items and model coupling

TODO: Obsolete when all model couplings are performed using d_hydro.exe?

2.6 Functions and spatial data

Delta Shell offers facilities for defining a number of mathematical concepts3. These mathe-
matical concepts are often used as the underlying data structures that are sent to the kernels,
and to save results from the kernels in. Also, these structures are used as data sources for the
visualisation. It is therefore recommended to understand the basic functionalities that Delta
Shell has to offer in this respect.

2GIS: Geographic Information System.
3The description of this funcionality in this document will be quite practical. A more theoretical background on

this topic can be found in the following conference paper.

Deltares 9 of 81

http://www.researchgate.net/publication/232274419_Functional_Coverages

DRAF
T

Delta Shell, Technical Reference Manual

HydroRegion

«interface»
IHydroNetwork

«interface»
INetwork

+ Branches: IEventedList<IBranch>
+ Nodes: IEventedList<INode>
+ BranchFeatures: IEnumerable<IBranchFeature>
+ NodeFeatures: IEnumerable<INodeFeature>

HydroArea

RegionBase

DrainageBasin

«interface» IRegion

+ SubRegions: IEventedList<IRegion>
+ AllRegions: IEventedList<IRegion>
+ Parent: IRegion

«interface»
IHydroRegion

+ AllHydroObjects: IEnumerable<IHydroObject>
+ Links: IEventedList<HydroLink>

+ AddNewLink(source: IHydroObject, target: IHydroObject): HydroLink
+ RemoveLink(source: IHydroObject, target: IHydroObject)
+ CanLinkTo(source: IHydroObject, target: IHydroObject): bool

Figure 2.6: Class diagram for the Hydro region.

T

«interface» IMultiDimensionalArray

+ this[params int[] argValues]
+ DefaultValue: object
+ Rank: int
+ Shape: int[]
+ Stride: int[]

+ Clear()

T

«interface» IVariable

+ Values: IMultiDimensionalArray<T>
+ DefaultValue: T
+ NoDataValues: IList<T>
+ InterpolationType: InterpolationType
+ ExtraPolationType: ExtrapolationType

And many more...

«interface» INetworkCoverage

+ Network: INetwork
+ Locations: IVariable<INetworkLocation>
+ Segments: IVariable<INetworkSegments>

«interface» IFeatureCoverage

+ FeatureVariable: IVariable
+ Feature: IEventedList<IFeature>

«interface» IComplexFeature

+ CoordinateSystem: ICoordinateSystem

«interface» ICoverage

+ IsTimeDependent: bool
+ Time: IVariable<DateTime>

+ Evaluate<T>(coordinate: ICoordinate): T
+ Evaluate(coordinate: ICoordinate, time: DateTime): object
+ GetTimeSeries(coordinate: ICoordinate): IFunction
+ GetTimeSeries(feature: IFeature): IFunction
+ FilterTime(time: DateTime): ICoverage

«interface» IFunction

+ this[params object[] argValues]
+ Store: IFunctionStore
+ Arguments: IEventedList<IVariable>
+ Components: IEventedList<IVariable>
+ Parent: IFunction
+ Attributes: IDictionary<string, string>
+ Filters: ILIst<IVariableFilter>
+ IsIndependent: bool

+ GetValues<T>(filters: IVariableFilter[]):
 IMultiDimensionalArray<T>
+ SetValues(values: IEnumerable, filters: IVariableFilter[])
+ Evaluate<T>(arguments: object[]): T
+ Filter(IVariableFilter[]): IFunction
+ Clear()

«interface» IFunctionStore

+ Functions: IEventedList<IFunction>

+ SetVariableValues<T>(function: IVariable,
 values: IEnumerable<T>,
 filters: IVariableFilter[])
+ GetVariableValues<T>(function: IVariable,
 filters: IVariableFilter[]): IMultiDimensionalArray<T> uses

 uses

1

1

1 *

1

*1

1

Figure 2.7: Class diagram for IFunction and related interfaces and classes.

10 of 81 Deltares

DRAF
T

The Delta Shell application

2.6.1 Functions

One of the central concepts is the IFunction (see Figure 2.7 for a class diagram): It defines
a function, which can have an arbitrary number of arguments and components (which are
sometimes called independent and dependent variables as well, respectively). In other words,
it can map from an m-dimensional space to an n-dimensional space:

F = (f1, f2, · · · , fn)(x1, x2, · · · , xm) (2.1)

Under this nomenclature, F is the function, f1, f2, · · · , fn are the components (or: depen-
dent variables) and x1, x2, · · · , xm are the arguments (or: independent variables). In theory,
arguments can be functions by themselves (which in fact they are, according to the class
hierarchy), but that hardly happens. Let’s consider a few examples to illustrate the use of
functions:

⋄ When a time series for water level is requested in the central map, Delta Shell will create
a simple function, with one argument (time) and one component (water level).

⋄ A constant wind field in Flexible Mesh is defined as a vector with two components (an
x-component and a y-component) and two arguments (the x-location and the y-location).

A function can have arguments and components with different units (e.g. time, water level,
concentrations, etc), but a single variable is always expressed in one unit. Therefore, IVariable
is a templated class. Variables also have one multi-dimensional array, which contains the ac-
tual data. This needs to be generic, because the dimensionality of the variable is determined
by the arguments of the variable/function it depends on. For instance, in the constant wind
field example just discussed, the shape of the components’ arrays is 2-dimensional: the num-
ber of x-locations on one axis and the number of y-locations on the second axis. Therefore, if
an argument is added to a function, the dimensionality of the components is updated as well.

2.6.2 Coverages

A coverage (as depicted in Figure 2.7, also often called ‘spatial data’) is a special kind of
function: if defines values with a location as one of its arguments. Therefore, it also inherits
from IFeature (see chapter 6 for more information on any kind of spatial data). Additionally,
it might be time-dependent. For instance, a coverage defined for initial water level is defined
only once: therefore, it is not time-dependent and has only one argument (location, in the form
of a feature) and one component (water level). On the other hand, the water level coverage
that is the result of a computation is a time-dependent coverage, so it has two argument
instead of one: location and time.

It is sensible to have custom-made coverages for different types of features. In the current
implementation, custom coverages have been crafted for different kinds of features: Network-
Coverage, UnstructuredGridCoverage, CurvilinearGridCoverage, FeatureCoverage...

2.6.3 Function filters

Occasionally, the user does not need all data that is available in a function, but a subset or a
reduced version. To this end, filters have been defined in Delta Shell. The following filters are
frequently used (more are available):

⋄ VariableValueFilter : creates a slice from the data based on values, without reducing di-
mensionality.

⋄ VariableIndexFilter : idem, but uses indices to filter.
⋄ VariableReduceFilter : reduces the dimensionality of the data. For instance, create a time

series from a coverage that is both time and location-dependent. The output function will

Deltares 11 of 81

DRAF
T

Delta Shell, Technical Reference Manual

only depend on time, and not on location. In order to use this filter, a VariableValueFilter
needs to make the remaining arguments unique. See below for an example.

var function2D = new Function { Arguments = { x1, x2 },
Components = { y } };

IFunction filteredFunction = function2D.Filter(
new VariableValueFilter<int>(x1, 333),
new VariableReduceFilter(x1));

// filteredFunction now has one argument (x2).
// All y values contained in filteredFunction are now evaluated with x1=333

Filters only represent a view on the original data, they do not perform a copy or execute the
operation. The implementation of filters is defined in every function store (see below). So, the
memory store contains an implementation of the variable value filter, but the netCDF function
store has it as well. It is possible to manipulate the original values of a function through a
filtered version.

2.6.4 Evaluating a function

One of the features of an IFunction is that it is not necessary to provide an input value at
a specific data point to retrieve a value for a component for that data point. For each argu-
ment and component, an interpolation and extrapolation strategy is defined (e.g. linear or
constant), which is respected when the best possible approximation is computed. The actual
implementation of the intrapolations and extrapolations can be found in the Function class.

2.6.5 Function store

The function store is the place where the data inside the function are actually stored. This
can be memory (MemoryFunctionStore) or a netCDF file (NetCdfFunctionStore and ReadOn-
lyNetCdfFunctionStoreBase), for instance. In the memory function store, all data is always in
memory, but for external sources, such as a netCDF file, this needs not be the case. This is
also not always desirable: if a netCDF file is very large, it might be worthwhile to only load and
cache the data that is requested. Therefore, if an owner requests or sets data from Function
via GetValues() or SetValues, Function will not directly access its variables and arrays, but will
dispatch this call to the function store. The function store will then either get the values from
memory or from the external source.

2.7 Model validation

The user can create a model freely, and customise its settings as he wishes. However, this
may lead to a model configuration of which it can be recognised by the plugin that it is invalid.
For instance, a Flow1D model that contains different types of cross sections on one branch
is considered to be invalid. Before the model is run, it is checked that the model can be
validated. If this is not the case, Delta Shell will stop during the initialisation of the model. A
user can also validate the model manually. The resulting view is the ValidationView, which will
show a report of the validations that have been performed.

The resulting object model (see Figure 2.8) is fairly simple, with a tree structure of validation
reports and validation issues. Validation issues have a severity (info, warning or error). When
the severity of a report is calcluated, the level of the most severe issue that is under that tree
is taken. A validation issue also contains information about the object that is incorrect. For

12 of 81 Deltares

DRAF
T

The Delta Shell application

RainfallRunoffModelValidator

WaterFlowFMModelValidator

ValidationIssue

+ Severity: ValidationSeverity
+ Message: string
+ Subject: object
+ ViewData: viewData

ValidationReport

+ Cateogry: string
+ Issues: IEnumerable<ValidationIssue>
+ SubReports: IEnumerable<ValidationReport>

+ Severity(): ValidationSeverity
+ IsEmpty(): bool
+ GetAllIssuesRecursive(): IList<ValidationIssue>
+ AllErrors: IEnumerable<ValidationIssue>
+ ErrorCount: int
+ WarningCount: int
+ InfoCount: int

T, S

IValidator

+ Validate(rootObject: T, target: S): ValidationReport

1

*

1 *

Figure 2.8: Class diagram for model validation.

instance, if one control group in RTC is incorrect, a reference to that control group is put in the
Subject property. This can be used to guide the user to an applicable view when he clicks on
a validation issue in the validation view.

Deltares 13 of 81

DRAF
T

Delta Shell, Technical Reference Manual

14 of 81 Deltares

DRAF
T

3 The Delta Shell GUI

3.1 Overview

App.XAML

DeltaShellGui «interface» ICommand

+ Name: string
+ Enabled: bool
+ Image: Image
+ Checked: bool

+ Execute(arguments: params object[])
+ Unexecute()

«interface» IGuiCommand

+ Gui: IGui

«interface» IGuiCommandHandler

- GuiImportHandler: GuiImportHandler
- GuiExportHandler: GuiExportHandler

+ CreateNewProject(): bool
+ OpenProject(): bool
+ CloseProject(): bool
+ OpenDefaultViewForSelection()
+ OpenViewForSelection(viewType: Type)
+ OpenView(dataObject: object, viewType: Type)
+ RemoveAllViewsForItem(dataObject: object)
+ RunModelsForSelection()
+ RunAllModels()
+ CanRunModelsForSelection(): bool
+ RunSelectedModel()
+ CanRunSelectedModel(): bool
... etc

«interface»
IViewContext

+ Data: object
+ ViewType: Type

«interface» IGuiContextManager

+ ProjectViewContexts: IList<IViewContexts>

+ GetViewContext(viewType: Type, data: object): IViewContext
+ AddViewContext(viewContext: IViewContext)
+ RemoveViewContextsForItem(data: object)

«interface» ISelectionContainer

+ Selection: object
+ SelectedModel: IModel
+ SelectedProjectItem: IProjectItem

«interface» IGui

+ Application: IApplication
+ MainWindow: IMainWindow
+ ViewContextManager: IGuiContextManager
+ CommandHandler: IGuiCommandHandler
+ Commands: IList<IGuiCommands>
+ CopyPasteHandler: IProjectItemCopyPasteHandler
+ DocumentViewsResolver: IViewResolver
+ DocumentViews: IViewList
+ ToolWindowViews: IViewList
+ Plugins: IList<GuiPlugin>
+ PluginVersions: string
+ IsViewRemovedOnItemDeleteSuspended: bool

+ Run()
+ Exit()
+ GetPluginGuiForType(type: Type): GuiPlugin

1

0..n

1 1

1 1

1

0..n

Figure 3.1: Class diagram for the Delta Shell GUI.

Delta Shell is started as a Windows Presentation Framework (WPF) application. The corre-
sponding startup XAML file (App.xaml) can be found in the DeltaShell.Gui project. WPF has
been chosen as the start platform, because it supports the external component FluentRibbon,
which manages and visualises the ribbon in Delta Shell. Most other user controls (including
windows and panels) use standard components from Windows Forms instead, although it is
still possible to use WPF components in your plugin.

When App.xaml is started, it will create a DeltaShellGui object (which inherits from IGui ; see
Figure 3.1.). IGui contains an Application (discussed previously), as well as the MainWindow
(the actual window; discussed below). While IApplication administers a list of application
plugins, IGui has a list of GUI plugins. The Commands are used to standardise certain
frequent operations that can be issued to the GUI. Eventually, the CommandHandler will
dispatch the given commands. Views and the ViewResolver are discussed in section 3.4.

As a ribbon is supposed to do, it changes its behaviour based on its context. Depending on
the selected object, menu and buttons are activated and deactivated, or disappear entirely.
Menus and buttons can be introduced by plugins, and are found in the Ribbon.xaml files in
the respective GUI plugins.

The main window is captured in the MainWindow object, which realises the IMainWindow
interface (see Figure 3.2). It contains direct references to three important parts of the graphical
interface: the project explorer, the property grid and the log message window. Each of these
will be discussed in separate parts below.

Deltares 15 of 81

DRAF
T

Delta Shell, Technical Reference Manual

«interface» IProjectExplorer

+ TreeView: ITreeView

+ GetContextMenu(sender: ITreeNode, o: object): IMenuItem
+ ScrollTo(projectItem: IProjectItem)

«interface» IMessageWindow

+ AddMessage(level: Level, time: DateTime, source: string,
 message: string, exception: string)
+ Clear()
+ IsMessageLevelEnabled(level: Level)

«interface» IPropertyGrid

+ Enabled: bool

+ Refresh()
+ GetObjectProperties(sourceData: object): object

«interface» IMainWindow

+ ProjectExplorer: IProjectExplorer
+ PropertyGrid: IPropertyGrid
+ MessageWindow: IMessageWindow
+ Icon: Icon
+ Title: string
+ Visible: bool
+ StatusBarMessage: string

+ Show()
+ Close()
+ ValidateItems()
+ SetWaitCursorOn()
+ SetWaitCursorOff()

«interface» IView

...

1 1

1 1

1 1

Figure 3.2: Class diagram for the Delta Shell main window.

3.2 The ribbon

Delta Shell uses FluentRibbon for its ribbon functionality. The definition of the (WPF) rib-
bons is done in files with the extension .xaml and .xaml.cs. Because of the plugin structure
of Delta Shell, the ribbon is dynamic, depending on which plugins are loaded. Therefore,
ribbon fragments are defined in the GUI plugins, and they need to be registered in the GUI
plugin’s RibbonCommandHandler property. This interface exposes the Commands list, which
is queried by the Delta Shell GUI, in order to maintain an extensive list of commands from all
GUI plugins.

A common type of command is the MapToolCommand. A map tool command uses a MapTool
which interacts with the central map. Such commands can add, remove, move, edit (etc) map
features, or zoom in or pan.

3.3 Docking

DeltaShell.Gui...AvalonDockDockingManager

«constructor» AvalonDockDockingManager(
 dockingManager: DockingManager,
 dockingLocations: ViewLocation[])
- AddToolView(view: IView)
- AddDocumentView(view: IView)

IView

«interface» IEventedList

...

«interface» IViewList

ActiveView: IView
AllViews: IEnumerable<IView>

Add(view: IView, viewLocation: ViewLocation)
GetActiveViews<T>(): IEnumerable<T>
FindViewsRecursive(views: IEnumerable<IView>):
 IEnumerable<IView>
Clear(viewToKeep: IView)

ViewList

+ Gui: IGui

«constructor» ViewList(dockingManager: IDockingManager,
 defaultLocation: ViewLocation,
 guiContextManagerGetter: Func<IGuiContextManager>)

DeltaShellGui

+ DocumentViews: ViewList
+ ToolViews: ViewList
...

«interface» DeltaShell.Gui...IDockingManager

+ Views: IEnumerable<IView>

+ Add(view: IView, viewLocation: ViewLocation)
+ Remove(view: IView, removeTabFromDockingbar: bool)
+ SetToolTip(view: IView, tooltip: string)
+ ActivateView(view: IView)

Xceed.Wpf.AvalonDock.DockingManager

(see Avalon's documentation)

MainWindow

+ DockingManager: DockingManager
...

1
2

1

1

1

1

Figure 3.3: Class diagram for the docking mechanism.

16 of 81 Deltares

DRAF
T

The Delta Shell GUI

Delta Shell uses a system of dockable windows to give the user a good control of how she or-
ganises her application. Internally, Delta Shell employs the AvalonDock component to achieve
the docking behaviour. MainWindow ’s DockingManager is the Avalon docking manager that
is instantiated only once, which is passed through to two ViewLists: one for documents (which
can only appear in the center top or as a floating view) and one for tools (which can appear on
the sides (left, right or bottom) or as a floating view. The ViewList is eventually a list of IViews.
Each ViewList also has its own (Delta Shell) docking manager: the AvalonDockDockingMan-
ager.

3.4 Windows and views

TData, TViewData, TView

ViewInfo

Description: string
Image: Image
DataType: Type
ViewDataType: Type
ViewType: Type
CompositeViewType: Type
GetViewName: Func<TView, TViewData, string>
AdditionalDataCheck: Func<TData, bool>
GetViewData: Func<TData, object>
AfterCreate: Action<TView, TData>
OnActivateView: Action<TView, object>
GetCompositeViewData: Func<TData, object>
CloseForData: Func<TView,TData, bool>

ViewResolver

«constructor» ViewResolver(viewList: ViewList,
 viewInfos: IEnumerable<ViewInfo>)

«interface» IViewResolver

+ ViewInfos: IList<ViewInfo>
+ DefaultViewType: IDictionary<Type, Type>

+ OpenViewForData(data: object, viewType: Type,
 alwaysShowDialog: bool)
+ CreateViewForData(data: object, selectViewInfo:
 Func<ViewInfo, bool>): IView
+ CanOpenViewFor(data: object, viewType: Type): bool
+ GetViewsForData(data: object, includeChildViews: bool)
+ CloseAllViewsFor(data: object)
+ GetDefaultViewType(dataObject: object): Type
+ GetViewInfosFor(data: object, viewType: Type):
 IEnumerable<ViewInfo>

1 0..n

Figure 3.4: Class diagram for the ViewResolver.

A ViewInfo object is defined in a GUI plugin, which exposes its ViewInfo objects in the
GetViewInfoObjects() method. The purpose of this class is to create a relation between data
objects and views. This way, a plugin can universally send a message to the IGuiCommand-
Handler to open the view that is associated with that object type. For instance, if the user
clicks on the ’General’ project tree item in the Flexible Mesh plugin, the following ViewInfo
definition is used:

yield return new
ViewInfo<FlowFMTreeShortcut, WaterFlowFMModel, WaterFlowFMModelView>

{
Description = "FM Model",
GetViewName = (v, o) => o.Name + " (FM model)",
AdditionalDataCheck = o => o.CanSwitchToTab,
GetViewData = o => o.Model,
CompositeViewType = typeof(ProjectItemMapView),
GetCompositeViewData = o => o.Model,
OnActivateView = (v, o) => ((FlowFMTreeShortcut)o).NavigateToInView(v),
AfterCreate = (v, o) =>
{

v.Gui = Gui;
o.NavigateToInView(v);

}
};

In the constructor of this ViewInfo object, the three template parameters (FlowFMTreeShortcut
etc) are DataType, ViewDataType and ViewType respectively. In this case, when the user
double-clicks on the ’General’ item in the project tree (a FlowFMTreeShortcut), it needs to

Deltares 17 of 81

DRAF
T

Delta Shell, Technical Reference Manual

open the view for a WaterFlowFMModel, the ViewDataType. GetViewData is the delegate that
indicates how the ViewResolver can determine what the data is that needs to be visualised (in
this case: the FM model itself). Furthermore, you can indicate whether an extra check needs
to be done before considering opening this view (AdditionalDataCheck). The IView that will
be opened (WaterFlowFMModelView in this case), is part of a composite view. The type
of that composite view also needs to be given (ProjectItemMapView in this case, generally
known as the central map). In many cases, TData equals TViewData.

The ViewResolver is responsible for the behaviour described above. An often used entry point
is OpenViewForData. This method will search for all ViewInfos that have a matching TData.
If there is more than one matching ViewInfo, a number of heuristics have been implemented
to determine which ViewInfo has priority. If there are still multiple options afterwards, the user
will be presented a dialog in which the user can pick his desired view.

[h!]

«interface» IReusableView

+ Locked: bool

ProjectItemMapView

+ MapView: MapView

«interface» IAdditionalView

(empty interface)

«interface» ISearchableView

+ SearchItemsByText(text: string, caseSensitive: bool,
 isSearchCancelled: Func<bool>, setProgressPercentage: Action<int>):
 IEnumerable<Tuple<string,object»

«interface» IContextAwareView

+ ViewContext: IViewContext

«interface» ICompositeView

+ ChildViews: IEventedList<IView>
+ HandlesChildViews: bool
+ ActivateChildView(childView: IView)

«interface» IView

+ Data: object
+ Text: string
+ Image: Image
+ Visible: bool
+ ViewInfo: ViewInfo

+ EnsureVisible(item: object)

Figure 3.5: Class diagram for different types of views. ProjectItemMapView has been
included in this diagram because it plays a central role in the Delta Shell GUI.

All views that can be shown using the docking mechanism need to comply to the constraints
that are specfied by the IView interface (see Figure 3.5). Whenever a view is opened using
the ViewResolver, the ViewInfo object that is used for the creation of the view, is copied into
the ViewInfo property of the view itself. The view data will be copied into the Data property of
the IView.

There are a number of interfaces that inherit from IView that need to be mentioned here:

ICompositeView A composite view consists of several views. A good example of this type
of view is the BoundaryConditionEditor in the Flexible Mesh plugin.

IContextAwareView A view that is context-aware, has a so-called ’view context’. This
means that the view will be configured differently, depending on the data ob-
ject that is visualised or edited. This topic is covered in some more depth in
section 3.5.

ISearchableView Certain views can be searched in the GUI using the keyboard shortcut
Ctrl-F. This functionality is available to all views that implement ISearchable-
View.

IReusableView A view is called reusable if the Data object can be changed in the view. For
instance, when a user inspects a cross section in SOBEK (in the CrossSection-
View) and double-clicks a new cross section in the central map, the new cross
section will appear in the reused view, instead of opening a new view.

18 of 81 Deltares

DRAF
T

The Delta Shell GUI

3.5 The GUI Context Manager

The GUIContextManager has the role to administer all view contexts. A view context here
defines how a view should behave. This behaviour can also be persisted into the project
database. A good example of a view context can be found in the Real-Time Control (RTC)
plugin. The Control Group Editor has a Boolean setting (’auto-resize’) that can have distinct
values for different data objects: for instance, the user wants to have this setting turned on for
Control Group 1, and turned off for Control Group 2. Instead of registering this setting in the
data object itself (which would mean that GUI information is written into a non-GUI object),
two view contexts are registered in the GUIContextManager : one for Control Group 1 and one
for Control Group 2.

3.6 Treeviews

[!ht]

GuiPlugin

+ GetProjectTreeViewNodePresenters():
 IEnumerable<ITreeNodePresenter>
...

System.Windows.Forms.TreeView

DelftTools.Controls.Swf.TreeViewControls.TreeView«interface» ITreeNodePresenter

+ TreeView: ITreeView
+ NodeTagType: Type

+ UpdateNode(parentNode: ITreeNode, node: ITreeNode, nodeData: object)
+ GetChildNodeObjects(parentNodeData: object, node: ITreeNode): IEnumerable
+ CanRenameNode(node: ITreeNode): bool
+ CanRenameNode(node: ITreeNode, newName: string): bool
+ GetContextMenuItem(sender: ITreeNode, nodeData: object): IMenuItem

«interface» IView

...

«interface» ITreeView

+ Nodes: IList<ITreeNode>
+ SelectedNode: ITreeNode
+ CheckBoxes: bool
+ NodePresenters: ICollection<ITreeNodePresenters>
+ TreeViewNodeSorter: IComparer
+ AllLoadedNodes(): IEnumerable<ITreeNode>

+ GetTreeViewNodePresenters(nodeData: object, node: ITreeNode):
 ITreeNodePresenter
+ NewNode(): ITreeNode
+ AddNewNode(parentNode: ITreeNode, nodeData: object, insertionIndex: int):
 ITreeNode
+ GetNodeByTag(nodeData: object)
+ CollapseAll(node: ITreeNode)
+ ExpandAll(node: ITreeNode)
+ GetAllLoadedNodes(node: ITreeNode)

«event» SelectedNodeChanged: EventHandler
«event» BeforeWaitUntilAllEventsAreProcess: Action

«interface» ITreeNode

+ Tag: object
+ Text: string
+ Presenter: ITreeNodePresenter
+ Nodes: IList<ITreeNode>
+ Treeview: ITreeView
+ Parent: ITreeNode
+ Image: Image
+ ContextMenu: IMenuItem
+ ShowCheckBox: bool
+ Checked: bool
+ IsVisible: bool
+ Bold: bool
+ PreviousNode, NextNode: ITreeNode
+ IsExpanded: bool
...

+ Expand()
+ Collapse()
+ GetNodeByTag(item: object): ITreeNode
+ ShowContextMenu(location: Point)
+ EnsureVisible()
...

10..n

1

1

1

0..n

1

0..n

11

Figure 3.6: Class diagram for TreeViews. For readability, not all entries have been speci-
fied.

Treeviews are a commonly used user control in Delta Shell. Among others, it is used in the
following graphical components:

⋄ The project explorer: the panel that is usually at the left top. It contains the entire project
structure (to be discussed in section 3.7)>

⋄ The map legend: the panel that by default is located at the left bottom of the window. This
view will be discussed in more detail in section 6.4.

⋄ The region explorer. This component is mostly used in SOBEK, to navigate through the
objects (channels, cross sections etc.) that have been created by the user.

⋄ The spatial operations window (see section 6.5).

The class diagram for this component is depicted in Figure 3.6. Although the standard compo-
nent from the Windows Forms library is used, a new interface has been defined to standardise
the possibilities that are used in Delta Shell: ITreeView.

The interface that programmers will use most is ITreeNodePresenter. This defines in the

Deltares 19 of 81

DRAF
T

Delta Shell, Technical Reference Manual

GUI plugin how the project tree will look like in the GUI. In practice, most node presenters
inherit directly from TreeViewNodePresenterBase<T>, where NodeTagType=T. Node presen-
ters indicate how the node itself should look like (text and image) using the UpdateNode
method. Node presenters also declare what its immediate children should be, using the
GetChildNodeObjects. TreeFolders are used to create a folder structure (to separate input
and output in the Project Explorer for instance). TreeFolder has its own TreeFolderNodePre-
senter. Otherwise, the objects that need to be represented in the tree structure are returned
by GetChildNodeObjects. The TreeView will then search for appropriate node presenters that
can represent that object. For instance, a wind object is returned by the model node presen-
ter’s GetChildNodePresenter method. For this wind object, a separate wind node presenter
is available:

public class SomeModelNodePresenter : ModelNodePresenterBase<SomeModel>
{

public override void UpdateNode(ITreeNode parentNode,
ITreeNode node,
SomeModel nodeData)

{
node.Text = nodeData.Name;
node.Image = Properties.Resources.ModelIcon;

}

public override IEnumerable GetChildNodeObjects(SomeModel parentNodeData,
ITreeNode node)

{
yield return parentNodeData.Wind; // NOT an ITreeNode, but the data itself.
yield return parentNodeData.InitialConditions;

}
}

public class SomeModelWindNodePresenter :
TreeViewNodePresenterBaseForPluginGui<WindDefinition>

{
public override void UpdateNode(ITreeNode parentNode,

ITreeNode node,
WindDefinition nodeData)

{
node.Text = "Wind";
node.Image = Properties.Resources.Wind;

}

public override IEnumerable GetChildNodeObjects(WindDefinition parentNodeData,
ITreeNode node)

{
yield break; // No children

}
}

3.7 Project explorer

TODO.

3.8 Property grid

The panel in the right bottom of the window is called the property grid. It uses the stan-
dard Windows Forms PropertyGrid component1. The main input to this PropertyGrid is the

1For a nice introduction, please visit: http://www.codeproject.com/Articles/22717/Using-PropertyGrid.

20 of 81 Deltares

http://www.codeproject.com/Articles/22717/Using-PropertyGrid

DR
AF
T

The Delta Shell GUI

SelectedObject, of which the properties are derived by reflection. The PropertyGrid imple-
mentation is therefore agnostic to the type of objects it receives via SelectedObject.

Windows.Forms.PropertyGrid

...

PropertyGrid

- propertyGrid1: Windows.Forms.PropertyGrid

«interface» IPropertyGrid

+ Enabled: bool

+ Refresh()
+ GetObjectProperties(sourceData: object): object

IWeir

FMWeirProperties

+ Data: IWeir
+ Name: string
+ CrestLevel: string
...

«interface»
System.ComponentModel.ICustomTypeDescriptor

+ GetAttributes(): AttributeCollection
+ GetClassName(): string
+ GetComponentName(): string
+ GetProperties(): PropertyDescriptorCollection
+ GetProperties(attributes: Attribute[]):
 PropertyDescriptorCollection

PropertyBag

DynamicPropertyBag

DynamicObjectProperties
T

ObjectProperties

+ Data: T

GuiPlugin

+ GetPropertyInfos(): IEnumerable<PropertyInfo>
...

Tobject, TProperty: IObjectProperties

PropertyInfo

+ ObjectType: TObject
+ PropertyType: TProperty
+ AdditionalDataCheck: Func<object, bool>
+ GetObjectPropertiesData: Func<object, object>
+ AfterCreate: Action<object>

«interface» IObjectProperties

+ Data: objectretrieves
properties from

1

1

uses

1
0..n

Figure 3.7: Class diagram for the Property Grid.

In Delta Shell, a distinction is made between the object that is selected (e.g. a weir, rep-
resented by an IWeir object) and its properties (e.g. FMWeirProperties). The link between
these two concepts is made in the GUI plugin, where PropertyInfo objects are registered
(see Figure 3.7 for a class diagram). When an object is selected in the GUI (expressed in
IGui.Selection), an event is fired to update the property grid. The type of the selected object
is then looked up in the PropertyInfos of all GUI plugins, and the corresponding property data
is retrieved using GetObjectPropertiesData.

The properties that are shown in the property grid can be created in two ways: statically
(using ObjectProperties<T>) or dynamically (using DynamicObjectProperties). They will be
discussed separately below.

3.8.1 Static declaration of properties

A static declaration of properties looks as follows2:

[ResourcesDisplayName(typeof(Resources), "WindFunctionProperties_DisplayName")]
public class WindFunctionProperties : ObjectProperties<WindFunction>
{

[PropertyOrder(1)]
[ResourcesCategory(typeof(Resources), "Categories_General")]
[ResourcesDisplayName(typeof(Resources), "Common_Name_DisplayName")]
[ResourcesDescription(typeof(Resources), "WindFunctionProperties_Name")]
public string Name
{

get { return data.Name; }

2Please consult the WinForms documentation for details on the attributes with which the properties are deco-
rated.

Deltares 21 of 81

https://msdn.microsoft.com/en-us/library/system.windows.forms.propertygrid(v=vs.110).aspx

DRAF
T

Delta Shell, Technical Reference Manual

}
}

In this case, the WindFunctionProperties class has a reference to the original data (the Wind-
Function, via data), so that the values in the grid can be retrieved. The following PropertyInfo
object needs to be registered in the GUI plugin for this object to show up in the property grid:

public override IEnumerable<PropertyInfo> GetPropertyInfos()
{

yield return new PropertyInfo<WindFunction, WindFunctionProperties>();
...

}

3.8.2 Dynamic declaration of properties

Dynamic properties can just be added to the object that you want to show the properties of.
See for instance the following code from WaterFlowFMModel.cs:

[PropertyGrid]
[DisplayName("Validate before run")]
[Category("Run mode")]
public bool ValidateBeforeRun { get; set; }

In order for dynamic properties to show up in the property grid, the following PropertyInfo
object needs to be registered in the GUI plugin:

public override IEnumerable<PropertyInfo> GetPropertyInfos()
{

yield return new PropertyInfo<WaterFlowFMModel, DynamicObjectProperties>();
...

}

3.8.3 Property categories and read-only properties

You can specify categories using the [Category] attribute. If you want to change the order
in which the categories appear, you need to use the ‘tab trick’ (the more tabs, the lower the
category will appear in the property grid):

[Category("\t\t\t\t\t\tGeneral")]

The relative order of the properties is determined by the [PropertyOrder] attribute. Addition-
ally, you can set certain properties to be read-only, by using the [ReadOnly(true)] attribute.
In some cases, you might want a property to be read-only depending on certain conditions.
In that case, you will need the [DynamicReadOnly] attribute on the property that you want

22 of 81 Deltares

DRAF
T

The Delta Shell GUI

to make dynamically read-only, and a Boolean method that is decorated with the [Dynami-
cReadOnlyValidationMethod]. In case there are multiple dynamic read-only properties, only
one validation method is necessary.

[PropertyOrder(0)]
[DisplayName("Enable salt")]
public bool EnableSalt { get; set; }

[PropertyOrder(1)]
[DynamicReadOnly]
[DisplayName("Salt parameter 1")]
public int SaltParameter1 { get; set; }

[DynamicReadOnlyValidationMethod]
public bool ValidateDynamicAttributes(string propertyName)
{

if (propertyName.Equals("SaltParameter1") && !EnableSalt)
{

return true; // This property is made read-only.
}
return false; // Otherwise: property is editable.

}

3.9 Time navigator

UserControl

...

«interface» IView

+ Data: object
...

TimeSeriesNavigator

+ Data: ITimeNavigatable
- updateTimer: Timer

+ SelectNextTime()
+ SelectPreviousTime()
+ SelectFirstTime()
+ SelectLastTime()
- UpdateTimerTick(sender: object, e: EventArgs)
- UpdateChart()

NetworkSideView

...

ProjectItemMapView

...

«enumeration»
SnappingMode

None
Nearest
Interval

«enumeration»
TimeSelectionMode

Range
Single

«interface»
ITimeNavigatable

+ Times: IEnumerable<DateTime>
+ TimeSelectionStart: DateTime?
+ TimeSelectionEnd: DateTime?
+ CustomDateTimeProvider: TimeNavigatableLavelFormatProvider
+ SelectionMode: TimeSelectionMode
+ SnappingMode: SnappingMode

+ SetCurrentTimeSelection(start: DateTime?, end: DateTime?)

«event» TimesChanged: Action
«event» CurrentTimeSelectionChanged: Action

1

1

Figure 3.8: Class diagram for ITimeNavigatable. ProjectItemMapView and NetworkSide-
View are shown as examples of classes that implement ITimeNavigatable.

Many of the models in Delta Shell are time-dependent, and Delta Shell caters for this function-
ality with a time navigator. By default, it is located at the center bottom of the window. When
the user has a time-dependent view or map layer, the user can browse through the time with
this control, or let it play automatically. The view or map layer that is active will be updated
along with time in the time navigator, yielding an animation-like behaviour.

In order for a view or map layer to show this behaviour, it needs to implement the ITime-

Deltares 23 of 81

DRAF
T

Delta Shell, Technical Reference Manual

Navigatable interface (see Figure 3.8). The TimeSeriesNavigator control will use the SetCur-
rentTimeSelection method to notify the ITimeNavigatable that it needs to update its view.
Because the time navigator can only notify one time-navigatable view, there is no generic
way to update several views at the same time. However, the CurrentTimeSelectionChanged
event can be used to which subviews can subscribe. This is used in the central map (Projec-
tItemMapView), for instance: this way, all layers will be notified that they need to update after
the time has changed in the time navigator.

The time-navigatable object also has to give information to the time series navigator: which
times should be available in the time navigator control? This is achieved using the TimesChanged
event, which the TimeSeriesNavigator control will monitor.

24 of 81 Deltares

DRAF
T

4 Eventing

In large graphical applications, it can be painful to manage all types of events in such a
way that all changes in the domain objects are correctly reflected in the views, without too
much code repetition and performance degradation. Also, it is required that an undo/redo
mechanism is present. In Delta Shell, the chosen solution is Aspect-Oriented Programming
(AOP)1.

4.1 PostSharp in Delta Shell

The implementation of AOP is accomplished by Postsharp2. Although Postsharp 4.1 has been
released at the time of writing of this document, Delta Shell uses version 2.1, that last version
that was released under an open source license. That entails that not much documentation is
available online3.

The basic idea behind Postsharp is to change the Microsoft Intermediate Language (MSIL)
code after compilation. For instance, an extra method call or spawning of an event is triggered
before or after a method that is decorated with a certain attribute. The theory behind this is
that certain cross-cutting concerns (e.g. security, logging or eventing) is often intertwined in
the code, but is highly repetitive, and can be automated.

Pump

+ Name: string
+ Network: Network
+ Branch: Branch

Branch

+ Network: Network
+ Pumps: IEventedList<Pump>

Network

+ Branches: IEventedList<Branch>
+ Pumps: IEventedList<Pump>

1

n

1

1

1

1

1

1

1

n

1

n

Figure 4.1: Simple example of three classes with composition and aggregation relations.

Delta Shell primarily uses Postsharp aspects to deal with eventing. For instance: how can
a view be notified that something deep down in the object model has changed? In order to
explain this, consider the example in Figure 4.1, where a part of the SOBEK object model is
depicted. A network consists of several branches, and pumps are placed on these branches
somewhere. Although the pumps are explicitly placed on one branch, the network also main-
tains a list of pumps. Both branches and pumps contain references to their respective parents.
A solution without AOP would probably resort to creating custom events in the domain objects
and maintaining many event subscriptions. The Delta Shell solution (which diverges a bit from
the original Postsharp solution that was mentioned in the blog post) is shown in Figure 4.2.

The first thing that needs attention is the use of [Entity]4. It refers to the EntityAttribute class in

1A small introduction to AOP: https://en.wikipedia.org/wiki/Aspect-oriented_programming.
2See http://www.postsharp.net for more information.
3Basically, the current implementation mostly hinges on this blog post from 2009. Documentation of PostSharp

2.x can be found at https://www.postsharp.net/downloads/documentation/PostSharp-2.0.chm.
4Although the term ‘Entity’ is being used, it has nothing to do with Microsoft’s Entity Framework, which is an

Deltares 25 of 81

https://en.wikipedia.org/wiki/Aspect-oriented_programming
http://www.postsharp.net
http://www.postsharp.net/blog/post/introducing-postsharp-2-0-1-notifypropertychanged
https://www.postsharp.net/downloads/documentation/PostSharp-2.0.chm

DRAF
T

Delta Shell, Technical Reference Manual

[Entity]
public class Network
{
public IEventedList<Branch> branches {get; set; }

[Aggregation]
public IEventedList<Pump> Pumps {get; set; }

}

[Entity]
public class Branch
{
[Aggregation]
public Network Network { get; set; }

public IEventedList<Pump> Pumps { get; set; }
}

[Entity]
public class Pump
{
public string Name { get; set; }

[Aggregation]
public Network Network { get; set; }

[Aggregation]
public Branch Branch { get; set; }

}

Figure 4.2: Eventing using the Delta Shell Postsharp solution, based on the class diagram
in Figure 4.1.

the Delta Shell Framework and indicates that by default all properties in the decorated class
should be emitting PropertyChanged and CollectionChanged events5. Consider the following
two examples:

⋄ Postsharp will have changed the setter of Pump.Name, resulting in a PropertyChanged
event being emitted when the name of a pump has been changed.

⋄ If a new Pump is added to a Branch, a CollectionChanged event will be sent. In this
case, it is likely that the Network object will be listening to this event, in order to keep its
own list of pumps synchronised. Whereas PropertyChanged is created automatically by
Postsharp, CollectionChanged has been defined in Delta Shell, using EventedList.

To reduce the total number of events, the programmer is able to indicate whether the events
will be sent or not. This is achieved by maintaining a difference between composition and ag-
gregation. Details can be found here, but the gist is: in the case of composition, object A owns
object B, whereas in the case of aggregation, object A uses object B. Aggregated properties
need to have the [Aggregation] attribute. In the Delta Shell Framework, it is expected that all
domain objects that have been decorated with the Entity attribute, occur exactly once in the
entire composition tree. In this case, it is clear that the Network owns the Branches, which in
turn own the Pumps. Although every Pump knows the Network and Branch they belong to,
the Pump does not own them.

object-relational mapping solution.
5Besides ‘changed’ events which are fired after the change, there are also ‘changing’ events, which fire before

the change. These are however used a lot less frequently.

26 of 81 Deltares

http://programmers.stackexchange.com/questions/61376/aggregation-vs-composition

DRAF
T

Eventing

Although [Aggregation] is the preferred way to prevent events to be fired, there are some
other ways, too, that may be necessary for some reason. You can disable CollectionChanged
or PropertyChanged for an entire class by adding [Entity(FireOnPropertyChange = false)] or
[Entity(FireOnCollectionChange = false)] to the class definition. Also, you can disable the
events for individual properties by adding [NoNotifyPropertyChange] or [NoNotifyCollection-
Change] to the property.

In order for the events to have effect, objects need to subscribe to the PropertyChanged and
CollectionChanged events. This is shown in Figure 4.3. The example also makes clear that
proper unsubscribing is necessary when the value of a collection property is changed, in order
to prevent event leaks. It is important to realize that when you assign a property that is a list
itself, this will trigger a PropertyChanged event instead of a CollectionChanged event.

Emitting events is automatic. Also, the passing upwards (‘bubbling’) of these events is also
automatic. In this example, it means that if Network is subscribed to Branches’ Property-
Changed event, this event handler will be triggered whenever a property of Pump has been
changed. CollectionChanged events will be bubbled in the same way. Eventually, this is how
views in Delta Shell will be updated:

1 The user clicks in the central map (or changes a property in the property grid), which will
trigger custom events.

2 The custom event will somehow change the object data.
3 The changes in the object data will trigger PropertyChanged and CollectionChanged

events.
4 These events will bubble upwards (if necessary), whose changes will be reflected in the

views that have subscribed to the PropertyChanged and CollectionChanged events.

Although most eventing in Delta Shell is done with the use of Postscript, this does not of
course inhibit the use of custom events.

4.2 Undo/redo

Delta Shell uses the eventing mechanism to implement an undo/redo mechanism6. The user
control that takes care of this mechanism is the UndoRedoHistoryControl. The main data
structure for the undo/redo mechanism is the UndoRedoManager. The internal working of
this instrument will not be discussed here, but it is important how to enable undo/redo in your
code:

⋄ Each change must start with a ‘changing’ and (unless cancelled) end with a ‘changed’
event. This is done automatically when a class is decorated with the [Entity] attribute.

⋄ Each event must be received at the root node. In the case of Delta Shell, this is the Project.
⋄ Restoring one property (undo), must not cascade and change other properties (‘side-

effects’). This is what the [EditAction] attribute signifies in Figure 4.3.
⋄ Each event must be received only once.

Sometimes, a user action has the consequence that several properties or collections are
changed. This will result in a large list of actions that can be undone using the undo/redo
mechanism. This can be quite clumsy to the user, and therefore a feature has been created
to group a number of actions. For instance, when the user adds a new model, this will result

6Currently, this feature is only supported in the plugins D-Flow1D, D-RainfallRunoff and D-RealTimeControl.
This feature is therefore only available if the project solely contains models from these three; otherwise is turned
off. In the future, this feature might be dropped and instead, a macro recorder will be used, so that after a number
of edits by the user, we can see what equivalent Python code is inserted.

Deltares 27 of 81

DRAF
T

Delta Shell, Technical Reference Manual

in a cascade of events, but when the following code pattern is followed, the user will only see
one action in the undo history.

public class GuiCommandHandler : IGuiCommandHandler
{
public IModel AddNewModel()
{

gui.Application.Project.BeginEdit("Add new model: " + newModel.ToString());

var newModel = CreateNewModelUsingDialog(gui.SelectedProjectItem);
Models.Add(newModel);

if(!ReferenceEquals(newModel, items.LastOrDefault()))
{

cancel = true; // Apparently, the operation has failed...
}

if(cancel)
{

gui.Application.Project.CancelEdit(); // So cancel the operation.
}
else
{

gui.Application.Project.EndEdit(); // Round off the operation.
}

}
}

The use of BeginEdit and EndEdit can also be a very good tool to improve the performance of
operations that incur many events. When BeginEdit is called, the IsEditing property is set to
true. EndEdit sets it to false again. The object that is listening to the changes, can therefore
decide to postpone updating itself until EndEdit has been called. Therefore, you can often
see code snippets as follows in the listeners:

private void MeteoDataPropertyChanged(object sender,
PropertyChangedEventArgs e)

{
if (ReferenceEquals(sender, meteoData))
{

if (e.PropertyName == "DataDistributionType" ||
(e.PropertyName=="IsEditing" && !meteoData.IsEditing))

{
SetMeteoDataView();
SetMeteoDataTypeComboBox();

}
}

}

In this example, the views will update immediately when either DataDistributionType is changed
or when the IsEditing is set to false (during the EndEdit call). Otherwise, no updates will be
performed.

28 of 81 Deltares

DRAF
T

Eventing

4.3 Accessing the GUI thread from a worker thread

In some cases, Delta Shell uses a worker thread to do something in the background. For
instance, the ActivityRunner will pop up a progress screen when an importer is doing its
work. Normally, when the worker thread would attempt to update the progress bar text, a
CrossThreadException would be thrown. Windows Forms has an elegant way to overcome
this barrier: ISynchronizeInvoke. All Windows Forms controls implement this interface, and
the worker thread can reach the main UI thread using this interface. More on this topic can be
found in this article.

In Delta Shell, this is automated using AOP as well. The InvokeRequiredAttribute can be used
to indicate that a certain method will attempt to operate on data that is owned by a different
thread. An example usage of [InvokeRequired] is documented in Figure 4.4. In this exam-
ple, the GuiImportHandler is owned by the GUI thread, and the ConfigureImporterAndRun
method will also be executed in the main thread. However, the importer that it starts is run-
ning asynchronously (in a worker thread). When the import ends, the worker thread will trigger
the event handler. The event handler will run in the worker thread, but will change data in the
main thread. The [InvokeRequired] will make sure that the execution of the event handler will
be passed on to the GUI thread before it is executed, preventing a CrossThreadException.
However, using InvokeRequired incurs a large performance penalty.

Deltares 29 of 81

http://www.danderson.me/posts/using-isynchronizeinvoke-to-update-your-ui-safely-from-another-thread/

DRAF
T

Delta Shell, Technical Reference Manual

[Entity]
public class Network : EditableObjectUnique<long>, INetwork
{

public virtual IEventedList<IBranch> Branches
{

get { return branches; }
set
{

if (Branches != null)
{
Branches.CollectionChanging -= BranchesCollectionChanging;

}

branches = value;

if (Branches != null)
{
Branches.CollectionChanging += BranchesCollectionChanging;

}
}

private void BranchesCollectionChanging
(object sender, NotifyCollectionChangingEventArgs e)

{
if (Equals(sender, Branches) // Bubbled CollectionChanged from Pumps

// are now discarded.
{

privateField = 3 // Some non side-effect logic here.
OnBranchesCollectionChanging(sender, e); // All side-effect logic

// in an EditAction method.
}

}

[EditAction]
private void OnBranchesCollectionChanging

(object sender, NotifyCollectionChangingEventArgs e)
{

switch (e.Action)
{

case NotifyCollectionChangeAction.Add:
var branch = (IBranch) e.Item;
branch.Network = this; // side-effect
break;

case NotifyCollectionChangeAction.Remove:
// more side-effect logic here.

}
}

}

Figure 4.3: This code snippet shows how to subscribe to Postsharp-generated events
and how to distinguish ‘normal’ effects from side effects.

30 of 81 Deltares

DRAF
T

Eventing

public class GuiImportHandler
{
private void ConfigureImporterAndRun(IFileImporter importer,

IProjectItem importedItemOwner,
object target)

{
var importActivity = new FileImportActivity(importer, target)
{

ImportedItemOwner = importedItemOwner
};
importActivity.OnImportFinished += ImportActivityOnImportFinished;
ActivityRunner.Enqueue(importActivity);

}

[InvokeRequired]
private void ImportActivityOnImportFinished(FileImportActivity fileImportActivity,

object importedObject,
IFileImporter importer)

{
if (importer.OpenViewAfterImport)
{

gui.Selection = importedObject;
gui.CommandHandler.OpenViewForSelection();

}
}

}

Figure 4.4: Code snippet to illustrate the usage of InvokeRequired.

Deltares 31 of 81

DRAF
T

Delta Shell, Technical Reference Manual

32 of 81 Deltares

DRAF
T

5 Persistence

An important part of Delta Shell’s functionality is its ability to store and load projects. We
call this mechanism persistence: it gives a project a lifetime beyond that of the application.
Persistence within Delta Shell is not easy, unfortunately, and needs an entire chapter to be
discussed in enough detail. Still, this chapter will not be sufficient for those who want to make
changes to the persistence mechanism, but hopefully, it will prove helpful for those who want
to create a plugin with persistent data.

5.1 History of persistence in Delta Shell

Historically1, the models that are now incorporated under the Delta Shell plugin umbrella,
were persisted using a set of files. Besides a few binary formats, such as the .HIS and .MAP
files, these files were human-readable, and modellers have been able to modify these files in
text editors. With the introduction of Delta Shell, the original intention was to create an all-
encompassing object-relational mapping (ORM) solution for persistence. At first, Microsoft’s
Entity Framework was used, but this turned out to be insufficient2. In the end, nHibernate (the
C♯ port of Hibernate, a Java ORM framework) was chosen as persistence mechanism. All
data of a Delta Shell project is now stored in an SQLite database3, a file with the extension
.dsproj.

For some, this solution was insufficient. Some users are accustomed to the fact that they could
edit the model definition files themselves, which became nearly impossible in this setup. From
a developer’s perspective, getting the persistence right, including backwards compatibility,
turned out to be fairly complicated.

«interface»
IHybridProjectRepository

+ ProjectDataDirectory: string

+ Create(): Project
+ Open(path: string): Project
+ SaveProjectAs(project: Project, path: string)
+ Save(project: Project)
+ Close(project: Project)
+ Export(projectItem: IProjectItem, targetPath: string)

HybridProjectRepository

DeltaShellApplication

«interface»
IProjectFileBasedItemRepository

«interface»
IProjectRepository

Figure 5.1: Class diagram illustrating how a Delta Shell project contains both ORM and
file-based persistence.

Therefore, a file-based persistence mechanism was created in parallel. The basis of a Delta
Shell project is still the nHibernate database, but the project might refer to files that are stored
in the data directory of the project. This has the result that persistence in Delta Shell is actually
a hybrid of database storage and file storage.

Both types of storage will be discussed in this chapter, in separate sections. In Figure 5.1, a

1For the record: I do not want to impose an opinion on this topic in this section, but rather give an overview that
is as factual as possible.

2Not to be confused with the Entity attribute that is used for eventing.
3https://www.sqlite.org/

Deltares 33 of 81

https://www.sqlite.org/

DRAF
T

Delta Shell, Technical Reference Manual

very rough insight is given into where in Delta Shell both types of persistence are located. In
IApplication, a HybridProjectRepository is defined. This contains both an IProjectRepository
(NHibernate) and an IProjectFileBasedItemRepository (file-based).

5.2 Persistence with nHibernate

In order to understand this section, it is necessary to have a basic understanding of what
Object-Relational Mapping (ORM) is, and to have read a tutorial on nHibernate4.

5.2.1 Overall set-up

ConfigurationInfo

+ Configuration: Configuration
+ IsBackwardCompatibilityRequired: bool
+ IsSchemaUpgradeRequired: bool
+ SqlSchemaHash: int

SessionInfo

+ Session: ISession
+ EntityMetaModel: EntityMetaModel
+ IsLegacySession: bool
+ SchemaHash: int

HybridProjectRepository NHibernateProjectRepository

MappingRetriever

+ GetMappingsForVersion(plugin: IPlugin,
 persistedVersion: Version,
 pluginMappings: IEnumerable<MappingDocument>):
 MappingCollection

NHibernateSessionProvider

+ ConfigurationProvider: INHibernateConfigurationProvider

+ GetOpenSessionForExisting(path: string): SessionInfo
+ CreateNewDbAndOpenSessionFor(path: string): SessionInfo

SqlPluginVersionManager

+ LoadPluginVersion(path: string): IDictionary<string, Version)
+ SavePluginVersions(path: string)
+ AddPluginVersiion(name: string, pluginVersion: string)

«interface» IDataAccessListener

+ OnPreLoad(entity, loadedState, propertyNames)
+ OnPostLoad(entity, loadedState, propertyNames)
+ OnPreUpdate(entity, loadedState, propertyNames)
+ OnPostUpdate(entity, loadedState, propertyNames)
+ OnPreInsert(entity, loadedState, propertyNames)
+ OnPostInsert(entity, loadedState, propertyNames)
+ OnPreDelete(entity, loadedState, propertyNames)
+ OnPostDelete(entity, loadedState, propertyNames)

NHibernateConfigurationProvider

- properties: IDictionary<string, string>

+ AddPlugin(plugin: IPlugin)
+ AddMappingDocument(mappingDocument: XmlDocument)
+ AddDataAccessListener(listener: IDataAccessListener)
+ GetConfigurationFor(path: string, newFile: bool):
 ConfigurationInfo

DeltaShellApplication

NHibernateProjectRepositoryFactory

+ SessionProvider: ISessionProvider

+ CreateNew(): NHibernateProjectRepository
+ AddPlugin(plgin: IPlugin)
+ AddMappingStreams(streams: IEnumerable<Stream>)
+ AddDataAccessListener(listener: IDataAccessListener)

uses

uses

1 *

Figure 5.2: Class diagram illustrating how the nHibernate infrastructure is encapsulated
in the DeltaShellApplication object. In order to keep this picture understand-
able, some interface classes have been omitted.

In order to use nHibernate in a C♯ project, there is still some code necessary in the project. In
Delta Shell, this code in concentrated in an assembly called DeltaShell.Plugins.Data.NHibernate.
This is implemented as an ApplicationPlugin.

The encapsulation of the nHibernate infrastructure into the Delta Shell Application is depicted
in Figure 5.2. The application always has one project, and this project is represented on disk
by a project repository. In order to create a project repository, the application owns a project
repository factory. A project repository maintains a path to the current project (the .dsproj)
but does not renew itself when a new project is created or opened. Therefore, the project
repository factory will create only one project repository during the lifetime of the application5.

4A good candidate for starting is: http://nhibernate.info/doc/nhibernate-reference/. Another good tutorial is
http://www.codeproject.com/Articles/21122/NHibernate-Made-Simple. It might be good, hoewever, to realise that
Delta Shell currently uses version 2.0 of nHibernate, whereas the latest version is 4.1, at the time of writing.

5This appears to be a design flaw. This could be simplified by not using a factory at all.

34 of 81 Deltares

http://nhibernate.info/doc/nhibernate-reference/
http://www.codeproject.com/Articles/21122/NHibernate-Made-Simple

DRAF
T

Persistence

Roughly, the project repository, its factory and its subcomponents as shown in Figure 5.2 have
the following functionalities:

T=Project, T=long

NHibernateObjectRepository

+ Session: NHib.ISession

«interface»
INHibernateSessionMigrator

+ Migrate(migrationSession: SessionInfo,
 newSession: SessionInfo,
 typesToInclude: List<Type>)

NHibernateProjectRepository

- versionManager: IDbPluginVersionManager
- sessionProvider: ISessionProvider

+ «constructor» NHibernateProjectRepository
 (sessionProvider: ISessionProvider, versionManager: IDbPluginVersionManager)

«interface» INHibernateProjectRepository

+ VetoObjectDelete(entity: object): bool

«event» BeforeSaveOrLoad
«event» AfterSaveOrLoad

T=Project, ID=long

«interface» IProjectRepository

+ Path: string
+ IsOpen: bool

+ Open(path: string): Project
+ Create(path: string)
+ Close()
+ SaveAs(project: Project, targetPath: string)

T, ID

«interface» IObjectRepository

+ GetAll(): IList<T>
+ GetById(id: ID): T
+ SaveOrUpdate(object: T)

Figure 5.3: Class diagram of NHibernateRepository, one of the central classes in Delta
Shell.

⋄ Creating and loading, saving and closing projects. NHibernateProjectRepository contains
methods for these functionalities.

⋄ Lazy loading of objects. When a project is loaded, not all objects are immediately read
from the database and converted into data objects. Instead, proxy objects are created,
and when the code requests the contents of that object, it is unproxied. This can greatly
enhance the efficiency of loading a large project.

⋄ Creating and disposing NHibernate sessions. A session is a fully configured connection
of NHibernate to a database, including its configuration (e.g. mappings). It is represented
by the NHibernate.ISession interface, implemented by NHibernate.Impl.SessionImpl. In
Delta Shell, sessions are wrapped in SessionInfo objects, which indicate whether the
session is a legacy session, for instance.

⋄ Creating and disposing NHibernate configurations. An NHibernate configuration has knowl-
edge of all mappings (the .hbm.xml files), and also configures the way NHibernate con-
nects to the database. The latter can include batch sizes, driver type (in our case SQLite)
etc. See also the NHibernateSqlLiteConfigurationProperties class for some set properties.

⋄ Keeping track of plugin versions that are loaded into the running version of Delta Shell.
When a project is saved, a separate table is written to the database that indicates with
which version of the plugins the database has been written (see the PluginVersion table
in the database6).

⋄ Migrating an old project to the current format. Every time a project is loaded, Delta Shell
will check, for every plugin that is contained in the database, whether its format is the
same as the plugin version that is loaded in the application. Delta Shell determines this
on the basis of the FileFormatVersion property in IPlugin. If the file format versions are
different between the loaded plugin version and the persisted plugin version, there are
three possibilities:

1 The saved plugin version is newer. In this case, the project will not be loaded (Delta
Shell does not support forward compatibility).

6There are a number of free SQLite database viewers/editors available, such as SQLiteBrowser.

Deltares 35 of 81

DR
AF
T

Delta Shell, Technical Reference Manual

2 The saved plugin version is older. In this scenario, the session migrator (see Fig-
ure 5.3) will make sure that the database will be properly translated into the new for-
mat.

⋄ Data access listeners provide the possibility to subscribe to certain persistence events.
For instance, it is possible for an application plugin to implement the IDataAccessListen-
erProvider interface. If so, when the application loads the plugin, this will be detected,
and the plugin’s data access listeners will be added to the application’s collection of data
access listeners. The effect is that whenever an object is persisted or loaded (and some
more events), the data access listener will be notified. This can have quite an effect on
the performance, because this will be done for every single write and read action to the
database.

5.2.2 Mapping files

The mapping files are a crucial part in the persistence mechanism of Delta Shell. In principle,
NHibernate’s own documentation should cover this topic sufficiently. Some ‘how-to’ question
do come up regularly, however. These are therefore treated in the sections below.

5.2.3 How to enable or disable lazy loading

In some cases, projects can be so large that it hampers the usability of the software if the
entire project is loaded into memory. Therefore, a mechanism called lazy loading is set
up. This is a standard feature in NHibernate, and it is enabled by default. You can find
more documentation on this feature at, for instance, http://nhibernate.info/doc/howto/various/
lazy-loading-eager-loading.html. In other words, if you would like to eagerly load parts of
the project, you have to explicitly turn this on in a mapping file. http://ayende.com/blog/4573/
nhibernate-is-lazy-just-live-with-it shows how you can do it, and also why it can be dangerous.

5.2.4 How to solve: sqlite - max 64 tables in join

From time to time the following error occurs in DeltaShell: ‘SQLiteException occurred. SQL
logic error or missing database. At most 64 tables in a join.’. This indicates that NHibernate is
attempting to fetch data from too many different tables at the same time. Note that it doesn’t
matter at all if there is any data in those tables, all that matters is how big the biggest class
hierarchy is.

That hierarchy usually grows if you have many plugins loaded, for example many plugins have
ProjectItems, so the ProjectItem hierarchy can get pretty big! Nhibernate by default attempts
to load all objects at once, but as the data is spread over many tables it uses SQL JOINs to
do so. This is fine, up to the point where it gets above (or equal) to 64 joins, as that is the limit
of the database driver: SqlLite.

To prevent NHibernate from joining so many tables together, you have to add instructions in
the mapping files to prevent this. Unfortunately there doesn’t seem to be a simple permanent
fix, and instead as the relationships change and grow, this problem resurfaces every few
months, sometimes hidden and sometimes as a big exception whenever you try to load any
dsproj. Do note however that in production environments this issue is much less likely to
occur, as usually only a few plugins are shipped in a single install.

The best solutions appears to be to set (non-lazy) relationships to fetch=select, for example:

<many-to-one name="CalculationSelection"

36 of 81 Deltares

http://nhibernate.info/doc/howto/various/lazy-loading-eager-loading.html
http://nhibernate.info/doc/howto/various/lazy-loading-eager-loading.html
http://ayende.com/blog/4573/nhibernate-is-lazy-just-live-with-it
http://ayende.com/blog/4573/nhibernate-is-lazy-just-live-with-it

DRAF
T

Persistence

lazy="false"
fetch="select"
cascade="all-delete-orphan"
class="DeltaShell.Plugins.MorphAn.Models.CalculationSelection"
column="calculation_selection_id"/>

Recommended workflow:

1 Turn ’just my code’ off just prior to opening an offending dsproj.
2 Determine the extend of the problem: copy the sql query causing the exception (part of

command object) into a text editor
3 Count the number of occurrences of the string ’JOIN’ in the file (as a baseline) -> typically

between 64 and 100
4 Now the hard part: scan through that query and identify plugins / classes that seem to be

occurring a lot, or combinations you wouldn’t expect
5 Apply fetch=select on one or more (non-lazy!) relationships where you think it would

reduce the number of joins (see revision 21942 as an example)
6 Reload the project; if the exception still occurs check if the number of JOIN has actually

lessened (using text editor)
7 If not, revert, if it has, find another relationship to change.
8 Continue until no exception (preferably a bit longer: eg <40 joins!)

5.2.5 How to use cascades

Sometimes, the following error occurs: deleted object would be re-saved by cascade (remove
deleted object from associations). A very common cause is the cascade rules in the map-
ping as they require close attention. An example of a ’wrong’ mapping was the mapping of
composite branch structures (CS) (the mapping is shown below). The CS has a list of child
structures and these were persisted using a cascade=’all’. The same structures were also in
the list of branchfeatures on the branch and these were mapped using cascade=all-delete-
orphan. So the same weir was saved via branch and via the composite structure. This is fine
as long as the cascade don’t conflict.

Sometimes a conflict occurs when one cascade results in a delete and another in a save.
For example a compositie structure is deleted and the cascade deletes all child-structures.
But one of these structures is still in the branchfeatures collection of a branch. The branch
cascade insists on the object being saved (or at least not deleted) and the CS cascade wants
to delete. Hence a conflict. This can be fixed by removing the structure from both lists or
downgrading/removing one of the cascades. In this case the branch should be responsible
for saving the features and the CS should have a list of child structures without cascades.

Deltares 37 of 81

DR
AF
T

Delta Shell, Technical Reference Manual

A quick recap of the different cascades :

⋄ none: do not do any cascades, let the users handles them by themselves.
⋄ save-update: when the object is saved/updated, check the associations and save/up-

date any object that require it (including save/update the associations in many-to-many
scenario).

⋄ delete: when the object is deleted, delete all the objects in the association.
⋄ delete-orphan: when the object is deleted, delete all the objects in the association. In

addition to that, when an object is removed from the association and not associated with
another object (orphaned), also delete it. Orphan only checks one relation.

⋄ all when an object is save/update/delete, check the associations and save/update/delete
all the objects found.

⋄ all-delete-orphan when an object is save/update/delete, check the associations and save/up-
date/delete all the objects found. In additional to that, when an object is removed from the
association. (orphaned) delete it. So ’re-parenting’ (changing parent) is a problem.

A note about orphan cascade: Orphan only looks at one instance at a time. So a composite
structure might have a list of child structures. When a child structure is removed from the CS
it is considered an orphan. NHibernate does not care about other relation the structure might
have (for example with branch or a new CS). More information about reparenting can be found
at http://fabiomaulo.blogspot.com/2009/09/nhibernate-tree-re-parenting.html.

38 of 81 Deltares

http://fabiomaulo.blogspot.com/2009/09/nhibernate-tree-re-parenting.html

DRAF
T

Persistence

5.2.6 How to create a legacy mapping for a class where one property has changed

Let’s assume we have a Product class, with the following fields: Category, Id, Name, Available.
However, it was decided that it was more logical to use a ’Discontinued’ flag. This is not just
a simple rename! We need to do something equivalent to ’Discontinued = !Available’ when
loading products from the old database. Specifically, we need to write a nhibernate HBM
mapping file which reads the old database format into the new object model.

The original HBM looks something like this:

<?xml version="1.0" encoding="utf-8" ?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2" assembly="..." namespace="...">
<class name="Product">

<id name="Id"> <generator class="guid" /> </id>
<property name="Name" />
<property name="Category" />
<property name="Available"/>

</class>
</hibernate-mapping>

The new HBM looks like this:

<?xml version="1.0" encoding="utf-8" ?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2" assembly="..." namespace="...">
<class name="Product">

<id name="Id"> <generator class="guid" /> </id>
<property name="Name" />
<property name="Category" />
<property name="Discontinued"/>

</class>
</hibernate-mapping>

To migrate from the old database to the new object model, we must create another, special
mapping. This mapping will only be used for loading, not for saving, so we can use some
special features like embedding SQL queries into the HBM. Let’s start by writing the basics.
We can map most properties 1-to-1, as you can see here:

<?xml version="1.0" encoding="utf-8" ?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2" assembly="..." namespace="...">
<class name="Product">

<id name="Id"> <generator class="guid" /> </id>
<property name="Name" />
<property name="Category" />
<property name="Discontinued" formula="(Available = 0)"/>

</class>
</hibernate-mapping>

We must keep in mind that we can only map to new properties, so we cannot have a property
with name="Available" here. The ’Available’ value is however still there in the database, so in
this case we can solve it by using the ’formula’ field inside a property tag, to insert SQL queries
and logic to get values from the database. To understand why this works, it is important to

Deltares 39 of 81

DR
AF
T

Delta Shell, Technical Reference Manual

understand how NHibernate processes these formulas. NHibernate inserts the formula as a
subquery into the larger SQL. This is the cleaned-up version of what NHibernate generates:

SELECT product.Id, product.Name, product.Category, (product.Available = 0)
FROM Product product WHERE product.Id=...

Since ’Available’ is a boolean value stored as integer, we do a ’=0’ compare to inverse the
boolean value. Also notice that NHibernate will insert ’product.’ in front of ’Available’, since it
recognizes it as a column in the database.

5.2.7 How to create a legacy mapping for a class that has been split up

Figure 5.4: Example of how a class can be split up.

Consider the situation in Figure 5.4. Originally there was one big Bridge class, but later it was
decided to split it into a Bridge and a BridgeDefinition. Also the properties don’t exactly match:

⋄ SideArea: no longer exists
⋄ Pillars -> renamed to NumPillars
⋄ Color: should always be ’RED’
⋄ IsOpen: new

The old HBM is straightforward:

<class name="Bridge">
<id name="Id"> <generator class="guid" /> </id>
<property name="Name" />
<property name="Color" />
<property name="HasRoad"/>
<property name="Width"/>
<property name="Height"/>

40 of 81 Deltares

DR
AF
T

Persistence

<property name="SideArea"/>
<property name="Type"/>
<property name="Pillars"/>

</class>

The new HBM has now the following definition (there might be several bridges that point to
the same definition):

<class name="Bridge">
<id name="Id"> <generator class="guid" /> </id>
<property name="Name" />
<property name="Color" />
<property name="HasRoad"/>
<property name="IsOpen"/>
<many-to-one name="Definition" cascade="all-delete-orphan"/>

</class>

<class name="BridgeDefinition">
<id name="Id"> <generator class="guid" /> </id>
<property name="Type"/>
<property name="Width"/>
<property name="Height"/>
<property name="NumPillars"/>

</class>

We need to tackle four property changes and the class split itself. Let’s start with the property
changes:

Property Change Solution

SideArea No longer exists Do nothing!

Pillars Renamed to NumPillars <property
name="NumPillars"
formula="Pillars"/>

Color Should always be ’RED’ when
loading old data

<property name="Color"
formula="’RED’"/>

IsOpen New property, should always be
’true’ when loading old data

<property name="IsOpen"
formula="1"/>

Finally we need to tackle how to split the class. Fortunately NHibernate has something called
components, where it persists two classes into one table. We just tell NHibernate to threat the
table as such a table, with BridgeDefinition being a ’component’ of Bridge and NHibernate will
load the single table into two entities, just like we want. The resulting HBM looks like this:

<class name="Bridge">
<id name="Id"> <generator class="guid" /> </id>
<property name="Name" />
<property name="Color" formula="'RED'"/>
<property name="HasRoad"/>
<property name="IsOpen" formula="1"/>

<component name="Definition" class="BridgeDefinition">
<property name="Type"/>

Deltares 41 of 81

DR
AF
T

Delta Shell, Technical Reference Manual

<property name="Width"/>
<property name="Height"/>
<property name="NumPillars" formula="Pillars"/>

</component>
</class>

Note that the Id property of the BridgeDefinition component is not mapped. However when
saving this class in the new session (with the new hbm’s), it will receive an Id anyway.

The resulting SQL:

SELECT bridge.Id, bridge.Name, bridge.HasRoad, bridge.Type, bridge.Width,
bridge.Height, 'RED', 1, bridge.Pillars

FROM Bridge bridge
WHERE bridge.Id=...

Note that the splitting into a component is handled by NHibernate in code and has no effect
on the SQL.

5.2.8 How to create a legacy mapping for a class that has been merged

Figure 5.5: Example of how two classes can be merged.

The following situation we are going to look at is what should happen when two classes are
merged. Let’s consider the example in Figure 5.5. We should have no trouble maintaining
the Pumps list in Network; nothing changed there. So we just need to retrieve the Pump
properties DefinitionName and Capacity from another table: pump_definition.

Let’s start with the migrating HBM, which is almost the same as the new HBM:

<class name="Network">
<id name="Id"> <generator class="guid" /> </id>
<bag name="Pumps" cascade="all-delete-orphan">

<key column="PumpId"/>

42 of 81 Deltares

DRAF
T

Persistence

<one-to-many class="Pump"/>
</bag>

</class>

<class name="Pump">
<id name="Id">

<generator class="guid" />
</id>
<property name="Name" />
<property name="DefinitionName" formula=

"(SELECT def.Name FROM pump_definition def WHERE def.Id = Definition)"/>
<property name="Capacity" formula=

"(SELECT def.Capacity FROM pump_definition def WHERE def.Id = Definition)"/>
</class>

The two most interesting parts are how DefinitionName and Capacity have been defined.
Using the formula field and simple SQL we can retrieve these fields from the pump_definition
table, so we just need to match the Ids. The resulting cleaned-up SQL looks like this:

SELECT pump.NetworkId, pump.Id, pump.Id, pump.Name,
(SELECT def.Name FROM pump_definition def WHERE def.Id = pump.Definition),
(SELECT def.Capacity FROM pump_definition def WHERE def.Id = pump.Definition)

FROM Pump pump
WHERE pump.NetworkId=...

5.2.9 How to create a legacy mapping for a class that has been changed to a hierarchy of
classes

Figure 5.6: Example of how a class can be split up into one base class and two derived
classes. Some of the properties in the original class need to be divided over
the new derived classes.

Consider the migration in ??. We need to map specific properties for specific subclasses,
but the biggest challenge is how to tell NHibernate which subclass to instantiate on load. In
the old situation to differentiate between a RiverWeir and a SimpleWeir, one had to check the
WeirType (string) property.

In the past, WeirType could contain the following strings:

Deltares 43 of 81

DRAF
T

Delta Shell, Technical Reference Manual

⋄ simple_weir
⋄ river_weir
⋄ advanced_river_weir

We want NHibernate to use this property to decide which subclass to create, and we want
to map both ’river_weir’ and ’advanced_river_weir’ to the RiverWeir class. Let’s first assume
we don’t have this ’advanced_river_weir’. In that case we can use the normal discriminator
system of NHibernate (note: discriminator must come after Id!). We also map the specific
properties while we’re at it:

<class name="Weir">
<id name="Id">

<generator class="guid" />
</id>

<discriminator column="WeirType"/>

<property name="Name" />
<property name="CrestLevel" />
<property name="GateHeight" />

<subclass name="SimpleWeir" discriminator-value="simple_weir" >
<property name="DischargeCoefficient" formula="SimpleWeirDischargeCoefficient" />

</subclass>

<subclass name="RiverWeir" discriminator-value="river_weir" >
<property name="SubmergeReduction" formula="RiverWeirSubmergeReduction" />

</subclass>
</class>

Now lets look at the more complex situation with ’advanced_river_weir’ included. Again, for-
mula comes to the rescue, this time in ’discriminator’. This way you can influence the value
of what NHibernate sees as the discriminator value. The possible discriminator values you
return must match with the discriminator-values you supply for each subclass:

<class name="Weir">
<id name="Id">

<generator class="guid" />
</id>

<discriminator formula="case when WeirType in ('river_weir', 'advanced_river_weir')
then 'RiverWeir' else 'SimpleWeir' end"/>

<property name="Name" />
<property name="CrestLevel" />
<property name="GateHeight" />

<subclass name="SimpleWeir" discriminator-value="SimpleWeir" >
<property name="DischargeCoefficient" formula="SimpleWeirDischargeCoefficient" />

</subclass>

<subclass name="RiverWeir" discriminator-value="RiverWeir" >
<property name="SubmergeReduction" formula="RiverWeirSubmergeReduction" />

</subclass>
</class>

44 of 81 Deltares

DRAF
T

Persistence

Note that I have changed the discriminator-value of both subclasses and also in the discrimi-
nator formula, to indicate you can choose any.

5.2.10 How to deal with class renames or changes of namespace

Whenever you put an object in a DataItem, NHibernate figures out how to save this ’Value’
entity using what is called an Any mapping. As part of this Any mapping mechanism, NHiber-
nate stores the (CLR, .NET) type of the object in a column in the database as fully qualified
string. Also sometimes we map types directly, for example ValueType of a dataitem. This is
all fine, until you rename a class...

When NHibernate tries to convert the string back into a .NET type, it will fail and crash.
Legacy mappings won’t help you there. To solve this issue, we have added a custom HBM
(meta)attribute in DeltaShell: oldClassName. The value of this attribute is used as an alias
when resolving types. This happens automagically for the any mapping of dataitem, but if you
have mapped a Type column/property directly, make sure to load it using TypeUserType in
your legacy mapping.

Example: Your old class ’Branch’ has been renamed to ’Channel’. Now in your legacy map-
ping you do the following:

<class name="Channel" table="branch" lazy="false">

<meta attribute="oldClassName">Domain.Branch, Domain</meta>

<id name="Id" column="Id" type="Int64" unsaved-value="0">
<generator class="native" />

</id>
...

</class>

The value of the ’oldClassName’ attribute is the string as it appears in the old database,
typically ’namespace.class, assembly’.

To summarize: if you rename a persistent class, and there is any chance the object has ever
been used as DataItem value, parameter, variable, filter, or had its type mapped directly for
any other reason: make sure to add a meta attribute with the old class alias.

5.3 File-based persistence

Although most persistence is done with NHibernate, some items are represented by separate
files. A good example of this are restart files, which are usually written as ZIP files. Also
separate GIS files (shapefiles) or some databases are kept in separate files. Besides these,
some models are for the most part written as files, such as Flexible Mesh models and Waves
models. All object data are represented by the IFileBased interface (see Figure 5.7). It is vital
that these objects are in a composition relation to the Project. The repository listens to the
Project, and synchronises the list of all IFileBased items in the project. The main goal of this
synchronisation is that the file-based project repository will make sure that the changes to the
file-based items in the project are reflected on disk. The most important functionalities of this
class are therefore:

⋄ When a new file-based item (i.e. it implements IFileBased) is added to the project, the file-
based project repository takes care that this file is indeed added to the correct directory

Deltares 45 of 81

DRAF
T

Delta Shell, Technical Reference Manual

Project

...

WaveModel

...

WaterFlowFMModel

...

HydroModel

...

NetcdfFunctionStore

...

FileBasedRestartState

...

IFileBased

+ Path: string
+ Paths: IEnumerable<string>

+ IsOpen(): bool
+ CreateNew(path: string)
+ Close()
+ Open(path: string)
+ CopyTo(destination: string)
+ SwitchTo(destination: string)
+ Delete()

IProjectFileBasedItemRepository

+ ProjectDataDirectory: string
+ Project: Project

+ Initialize(project, projectDataDir: string)
+ Close()
+ Save()
+ SaveAs(drectory: string)
+ OrphanedItems(): IEnumerable<IFileBased>

owns indirectly

0

*

0

*

Figure 5.7: Class diagram describing file-based persistence. The given classes on the
right of the diagram are examples: more classes implement the IFileBased
interface.

inside the data directory of the project. Similarly, when a file-based item is removed, the
file will also be deleted from the data directory of the project. This behaviour is triggered
by the CollectionChanged event. In case the filename of a file is changed, this is also
picked up using the PropertyChanged event.

⋄ When changes are made to a file-based object and the project is saved, the changes will
indeed percolate to the file that is persisted on disk.

⋄ When the project is saved into a different location, the file-based project repository makes
sure that the file-based items of the project are located inside the data directory

46 of 81 Deltares

DRAF
T

6 Geospatial data and visualisation

One of Delta Shell’s main functionalities is its ability to work with geospatial data. Therefore,
the central map is a key component in the user interface. For instance, the user can draw
model schematisations, import data in different coordinate systems and visualise real maps
downloaded from external sources. In the Delta Shell implementation, there are a number of
open source libraries that are used to achieve these functionalities1:

⋄ GeoAPI: a set of interfaces that defines geometries and geometric operations, but contains
no implementations of these interfaces. This library is discussed in section 6.1. The cur-
rent version of this C♯ library can be downloaded from https://github.com/NetTopologySuite/
GeoAPI. This library is not to be confused with the Java GeoAPI interface, which bears
no relation with the C♯ variant.

⋄ NetTopologySuite: this library provides an implementation of the GeoAPI interface. It can
be found at https://github.com/NetTopologySuite/NetTopologySuite.

⋄ SharpMap: a set of that provide the mapping and drawing facilities.

6.1 GeoAPI

6.2 NetTopologySuite

6.3 SharpMap

GeometryDll directly to FM implementation.

6.4 The central map and its panel

6.5 Spatial operations

6.5.1 Introduction

One of the key features of DeltaShell is –or at least should be– extensive support for manipu-
lating and preprocessing geospatial data. The spatial operation functionality in the framework
attempts to achieve this goal for data defined on spatial or network discretizations (grids)2 or
point clouds. The former data is usually captured within a (time-independent) coverage3 in
DeltaShell. Spatial operations in DeltaShell fulfill the following extra requirements:

⋄ Reproducible manipulation of input data: all operations that a user performs are recorded
as objects and added to a stack such that all steps that lead to the final result can be
reproduced.

⋄ Grid independence: no single operation explicitly depends upon grid indices, all geometric
input data is projected onto the grid at each operation execution.

⋄ Transparency: within an operation stack it is possible to visualize all intermediate results.
⋄ Flexibility: within an operation stack it is possible to change properties of any operation and

re-evaluate with the new settings. It is generally possible to remove or disable operations
from an existing stack.

⋄ When working with large data sets, performance and responsiveness is more important
than consistency at all times, which is why a ’refresh’ button has been introduced.

Although the request for the spatial data editing functionality is strongest among FM users, it
was decided to adopt spatial operations in the DeltaShell framework, such that all plugins that

1Of these packages, out-of-date versions are used.
2some info about the type of grids??
3some info about coverage and spatial ordered data??

Deltares 47 of 81

https://github.com/NetTopologySuite/GeoAPI
https://github.com/NetTopologySuite/GeoAPI
https://github.com/NetTopologySuite/NetTopologySuite

DRAF
T

Delta Shell, Technical Reference Manual

expose coverage data to the central map could in theory make use of them. In practice, spatial
operations work generally only on unstructured grid coverages or curvilinear4 grid coverages,
which basically rules out most SOBEK input data for instance. However the design does not
keep us from building proper support for network coverages, it is simply a matter of priorities.

6.5.2 Object model

The spatial operation stack is represented by the class SpatialOperationSet, and has
the structure of a single-linked graph. The vertices of this graph are the spatial operations
and the links are instances of SpatialOperationData, and act as a wrappers around
the fundamental data object, FeatureProvider. Spatial operations process input feature
providers to produce an output that is connected to other operations. When the whole chain
is executed, the result is that all intermediate feature providers are up to date, and the final
output is evaluated by the last operation in the stack.

SpatialOperationSetExtensions

AddOperation(ISpatialOperation operation, ISpatialOperation previousOperation = null)

SpatialOperationData

ISpatialOperationData

Operation
Provider
Source

SpatialOperationSet

ISpatialOperationSet

Operations

SpatialOperation

ISpatialOperation

Inputs, Output
Parent
Execute()
StartsNewSet

0..n

0..n

Figure 6.1: UML diagram of spatial operation and operation sets

Note that both input and output SpatialOperationData instances are owned by the the
corresponding spatial operation; the sharing of the output is obtained by a proxy pattern5: a
connected input SpatialOperationData has a Source operation data that is invoked
upon calling its provider data. The spatial operations have been designed with the idea that

Inputs[0]:
Original data

Output:
Model data

SpatialOperationSet

Operation 3

Inputs[0](MainInput)
Inputs[1]
...
Output

Operation 2

Inputs[0](MainInput)
Inputs[1]
...
Output

Operation 1

Inputs[0](MainInput)
Inputs[1]
...
Output

{SpatialOperationData}
Source

{SpatialOperationData}
Source

{SpatialOperationData}
Source

Figure 6.2: Three-operation chain

there is one chain of operations within a spatial operation set. It is however possible that there
is a subset in the spatial operation set that has its own chain, which executes independently
from some operations in the parent set. The data that is passed through the chain is always

4some info about this?
5In distributed object communication, a local object represents a remote object (one that belongs to a different

address space). The local object is a proxy for the remote object, and method invocation on the local object results
in remote method invocation on the remote object. Think of an ATM implementation, it will hold proxy objects for
bank information that exists in the remote server.

48 of 81 Deltares

DRAF
T

Geospatial data and visualisation

coupled to the input with label "MainInput", and it is implicitly assumed that the feature
type of that propagating provider remains the same throughout the set6.

The creation of subsets is determined by the the property StartsNewSet on the spatial
operation to be added. If it is true, the extension method AddOperation will automatically
create a subset. Operations that impose this are:

⋄ SamplesOperation: base class for operations that have point cloud output. If such an
operation is applied after a coverage operation, it will automatically create a new subset.

⋄ CopyToSpatialDataOperation: clones the coverage to a new subset. Starts a
new subset with a coverage main input that comes from the current last operation output
in the main set.

In network topology terms, the first operation starts a new (sub-)branch, whereas the second
and third correspond to a branch split. Conversely, there are also branch-merging operations:

⋄ InterpolateOperation: interpolates a point cloud from a subset onto the main input
coverage.

⋄ MergeSpatialDataOperation: performs an arithmetic operation of a subset output
coverage onto the main coverage.

Note that a subset without any link to the main set via one of these merging operations will
not have any impact on the final result. Whereas the main input is reserved for the data
propagating through the chain, the other inputs of spatial operations are usually reserved for
input geometries, e.g. bounding polygons or contours for sample generation.

Finally,we mention the Dirty flag, which keeps track of operations that are no longer up-to-
date. Upon a property change, this flag is set in the dependent operations, and upon execution
only the operations that are dirty are processed.

Operation 2b

Inputs[0](MainInput)
Inputs[1]
...
Output

SpatialOperationSet

Inputs[0]:
Original data

Output:
Model data

SpatialOperationSet

Operation 3

Inputs[0](MainInput)
Inputs[1] (Coverage)
...
Output

Operation 2

Inputs[0](MainInput)
Inputs[1]
...
Output

Operation 1

Inputs[0](MainInput)
Inputs[1]
...
Output

Source
SourceSource

Figure 6.3: Three-operation set with subset topology

6.5.3 Framework Embedding

The embedding of spatial operations in the DeltaShell framework was aimed to be non-
intrusive and backwards compatible, but at the same time could be widely used among plug-
ins. We have chosen the following strategies:

Inside a dedicated map layer SpatialOperationSetLayer.
This group layer is created whenever a data object is the result of a spatial operation stack.

6In practice, these types can be either coverages or point clouds

Deltares 49 of 81

DRAF
T

Delta Shell, Technical Reference Manual

This layer however may or may not be the owner of the spatial operation set itself. In this
case, the operation set in the layer will be of the type SpatialOperationSetProxy, and
its remote source is part of a value converter (see below). The central maps determines the
ownership op the spatial operation.

Inside a (dedicated) value converter of input data items.
The responsibility of the value converter is to own the spatial operation set, provide with an
input coverage at construction (the original input) and copy the values after each execution
to the actual coverage (the converted value) without replacing the reference to the data item
value, because this would break existing functionality in client code.

The creation mechanism for this set of classes is provided by the central map. From the
visible, writable layers, the ones whose data source qualifies for spatial operations appear in
the combo-box in the spatial operation ribbon section. If a spatial operation command is exe-
cuted, it checks whether the underlying data is exposed to DeltaShell as a data item, in which
case the value converter will be created containing the new spatial operation set. The layer
itself is replaced with a SpatialOperationLayer containing the operation set proxy.

SpatialOperationSetProxy

Source

SpatialOperationSet

ISpatialOperationSet

SpatialOperationSetValueConverter

SpatialOperationSet
originalValue
convertedValue

SpatialOperationSetLayer

SpatialOperationSet
inputLayer
operationLayers

6.5.4 Spatial Operations

The spatial operations can be divided into two categories: coverage operations and sample
set operations. The first ones directly implement the abstract base class SpatialOperation,
while the second type have a common base SampleSpatialOperation, and they are
meant to produce point clouds. We already explained the chain splitting and merging opera-
tions before; the other operations are

⋄ EraseOperation: Sets the values of a coverage to the NoDataValue within a given
set of polygons (the Mask input).

⋄ CropOperation: Spatial complement of the erase operation: sets values of a coverage
to NoDataValue outside the given polygons.

⋄ SetValueOperation: Performs an arithmetic operation by a single value to all sample
point values or coverage values within a given set of polygons.

⋄ GradientOperation: Performs an arithmetic operation by a gradient field to all sam-
ple point values or coverage values within a given set of polygons.

⋄ SmoothingOperation: Performs an iterative averaging of coverage values within a
given set of polygons.

⋄ OverwriteValueOperation: Overwrites a coverage value of the point nearest to
the given point.

⋄ AddSamplesOperation: Adds a group of samples with a given value to the input point
cloud.

50 of 81 Deltares

DRAF
T

Geospatial data and visualisation

AddSamplesOperation

GradientOperationSmoothingOperation

SetValueOperation
OverwriteValueOperation

MargeSpatialDataOperation

CopyToSpatialDataOperation
CopyToSampleOperation

InterpolateOperation

CropOperation ValueOperationBase

SpatialOperation

SampleSpatialOperation

ContourOperation

ImportSamplesOperation

Figure 6.4: Spatial operation inheritance tree.

⋄ ContourOperation: Adds a group of samples along a given polyline with a single
value to the input point cloud.

⋄ CopyToSamplesOperations: copies coverage values to a point cloud, skipping no-
data valued grid points.

Note that many operations have the option to be confined within a set of input polygons; to
avoid duplicate code the utility class FeatureProviderMask has been introduced, which
contains algorithms for testing whether data points are within a polygon. Operations that per-
form an arithmetic operation within a given polygon have the common base ValueOperationBase.
We stress however that the inheritance tree is not definitive and may need restructuring as
more operations are included in future work.

6.5.5 GUI

In the DeltaShell user interface, the user creates spatial operations by clicking a the buttons in
the spatial editor ribbon section. These buttons are activated by the SharpMapGis GUI plugin
and upon clicking a corresponding command is executed. The commands all inherit from the
SpatialOperationCommandBase class which contains logic to determine whether the
command is enabled for the current target layer data source, and handles the insertion of a
newly created operation into an existing operation set.

The visualization of a given spatial operation stack is the responsibility of the SpatialOperationSetLayerView,
which is essentially a tree view of the graph of operations. It contains buttons to disable and
delete operations, a refresh button to execute all operations that are marked dirty, and a button
to export intermediate results to sample point files.

Deltares 51 of 81

DRAF
T

Delta Shell, Technical Reference Manual

6.5.6 Tests

To validate the spatial operations we have set up three test projects :

⋄ SharpMap.Tests: Tests to validate the workings of spatial data implementations
⋄ SharpMap.UI.Tests: Tests to validate the workings of the GUI elements of the central map

with the spatial operation objects
⋄ SharpMap.Extensions.Tests: Tests to validate the abstract data model of the spatial editor.

All three can make use of the test helper project SharpMapTestUtils. Especially the extensions
tests are important because they ensure the correct linking of the spatial data wrappers in
various configurations. Note that spatial operations are also tested on the plugin level in e.g.
DeltaShell.Plugins.FMSuite.FlowFM.Tests.ImportSpatialOperationsTest.

ValueOperationBase

SpatialOperationSet SpatialOperationSetProxy

SampleSpatialOperation

SpatialOperation

Polygons
Contours
Points

OnExecute()

«interface» ISpatialOperationData

+ Name: string
+ FeatureType: Type
+ Provider: IFeatureProvider
+ Source: ISpatialOperationData
+ Operation: ISpatialOperation

+ Dirty: bool
+ SetDirty()

«interface» ISpatialOperationSet

+ Operations: IEventedList<ISpatialOperation>

+ GetOperationsRecursive(): IEnumerable<ISpatialOperation>

«interface» ISpatialOperation

+ Inputs: IEventedLitst<ISpatialOperationData>
+ Output: ISpatialOperationData
+ Parent: ISpatialOperationSet
+ Enabled: bool
+ CoordinateSystem: ICoordinateSystem

+ Dirty: bool
+ Transform(transformation: ICoordinateTransformation)
+ GetAllFeatureProviders: IEnumerable<IFeatureProvider>
+ Execute()
+ SetDirty()

11

1

*

1

1

1 *
1 1

Figure 6.5: Class diagram on spatial operations.

52 of 81 Deltares

DRAF
T

Geospatial data and visualisation

«interface»
IHybridProjectRepository

+ ProjectDataDirectory: string

+ Create(): Project
+ Open(path: string): Project
+ SaveProjectAs(project: Project, path: string)
+ Save(project: Project)
+ Close(project: Project)
+ Export(projectItem: IProjectItem, targetPath: string)

HybridProjectRepository

DeltaShellApplication

«interface»
IProjectFileBasedItemRepository

«interface»
IProjectRepository

Figure 6.6: Class diagram on how spatial operations are integrated into the GUI.

Deltares 53 of 81

DRAF
T

Delta Shell, Technical Reference Manual

54 of 81 Deltares

DRAF
T

7 Other topics

7.1 Tables and graphs

7.2 Basic Modeling Interface (BMI)

7.3 Remote Instance Container

7.4 NetCDF

Two netCDF DLLs:

⋄ one by the framework (netcdf-4.3.dll), which is downloaded from netCDF website
⋄ one by FM (netcdf.dll), which has been compiled manually by us in order to have access

to the internal methods by the FM kernel.

7.5 Scripting using Python

Deltares 55 of 81

DRAF
T

Delta Shell, Technical Reference Manual

56 of 81 Deltares

DRAF
T

8 Programming help

8.1 NuGet packages

What happens if MorphAn is branched: branch framework along? Or reference one specific
Framework NuGet package in plugin/product?

8.2 32-bit vs 64-bit

Chosen for AnyCPU, meaning that by default, it is impossible to reference 32-bit native DLLs.

8.3 Build process

8.4 Creating an installer

build_an_msi.bat Wix

8.5 Testing

RhinoMocks!

8.6 Code conventions

8.7 Localisation

Most important: F6 in ReSharper.

8.8 Licensing

Deltares 57 of 81

DRAF
T

Delta Shell, Technical Reference Manual

58 of 81 Deltares

DRAF
T

9 Plugins

9.1 Flexible Mesh

9.1.1 Introduction

The purpose of the Flexible Mesh (FM) plugin for DeltaShell is to provide a new user interface
to D-Flow FM, a Fortran code which solves the shallow water equations on two-dimensional
unstructured grids. In this system, the computational core is compiled as a dynamic link library
and wrapped by the FlexibleMeshModelApi class for usage in the plugin. The interface
consists of the standard BMI, augmented with utility1 algorithms for spatial interpolation, grid
snapping and cell searching. Transmitting data between the FM kernel and the DeltaShell
plugin is not the exclusive responsibility of the FlexibleMeshModelApi; the bulk of the
model data is serialized to ASCII or NetCDF files and read by the kernel at model initialization.
In fact, the variable getters and setters within the BMI are only used for real-time coupling of
the model and online visualization of data.

The serialization to files provides the actual storage for Flexible Mesh models in DeltaShell.
The database mapping of the models is extremely sparse, with only the path to the master
definition file and output data as its members. This has the important advantage that all exist-
ing FM models can be imported in DeltaShell and conversely FM models in the plugin can be
exported to files and run for example on a Linux machine. Things become more complicated
for models that are coupled to D-RTC and models that contain spatial operations on their
initial data or bed levels, because they depend on framework objects that are mapped in the
database.

In the same source folder, FMSuite, we have created the Wave plugin which has many shared
components with Flexible Mesh. It uses a similar file-based master definition file and corre-
sponding dynamic model settings, it uses comparable boundary data and its bed level data
and initial conditions are defined on a 2d grid too, albeit a curvilinear regular grid. The com-
mon components of wave and FM are grouped into a separate plugin FMSuite.Common.

9.1.1.1 Overview

The basic object model of the Flexible Mesh plugin in DeltaShell is as follows: we have the
WaterFlowFMModel as the object containing all relevant data.

⋄ Its parameters are contained by the so-called WaterFlowFMModelDefinition in a
dynamically typed fashion.

⋄ The grid- and time-independent schematization is contained by the HydroArea class
⋄ The IHydroRegion implementation that provides spatial features such as dams, weirs,

structures and observation stations.
⋄ The model contains an unstructured grid and spatial fields that are defined on this grid,

such as bed levels, initial water levels and other initial conditions.
⋄ Finally the model contains boundaries with corresponding boundary conditions, and other

time-dependent data such as wind fields, temperature series, source and sink discharges.

The model output can be divided in three categories:

1 Spatial time-dependent data from the MapFileFunctionStore defined on the grid
2 Time series on observation points which are read by the HisFileFunctionStore
3 Possibly restart files.

1We stress here that these additional methods do not change the state of the underlying model in the native
library, such functions are exclusively within the BMI.

Deltares 59 of 81

DRAF
T

Delta Shell, Technical Reference Manual

WaterFlowFMModelDefinition

ModelPropertySchema
Properties

IHydroRegion

HydroArea

LandBoundaries
DryPoints
DryAreas
ThinDams
FixedWeirs
...

TimeDpendentModelBase

WaterFlowFMModel

Area2D
ModelDefinition
BoundaryConditions
SourcesAndSinks
HeatFluxModel
WindDefinition
FMMapFileStore
FMHisFileStore
Grid
Bathymetry
InitialWaterLevel
InitialSalinity...

Figure 9.1: Global data model of the Flexible Mesh model in DeltaShell.

The output function stores above are both NetCDF function stores with optimizations, with the
assumption of read-only function values.

9.1.2 The FlexibleMeshModelApi Class

As mentioned above, the wrapper of the computational core in the FM plugin implements the
IFlexibleMeshModelApi interface. There are in fact two implementations: the actual
FlexibleMeshModelApi class calling the native library and RemoteFlexibleMeshModelApi
that creates a separate process in which a FlexibleMeshModelApi instance exists, and
which serializes all calls and routes them to this instance. This construction has been chosen
to protect the user interface from memory corruption and process killing statements in the For-
tran code. Moreover it allows us to deploy a 64-bit kernel library within a 32-bit DeltaShell in-
stance and vice versa. Which implementation is used in the flow model instance is controlled
with the UseLocalApi property. The API consists of a BMI, extended with the following

RemoteFlexibleMeshModelApiFlexibleMeshModelApi

IFlexibleMeshModelApi

Figure 9.2: Remote and actual implementations of the IFlexibleMeshModelApi.

methods:

⋄ InitializeUserTimeStep, FinalizeUserTimeStep, InitializeComputationalTimeStep,
RunComputationalTimeStep, FinalizeComputationalTimeStep and Compute1d2dCoefficients:
functions necessary for the coupling of FM with a 1D SOBEK model,

⋄ WriteNetGeometry, WritePartitioning: utility functions to export the grid ge-
ometry (or partition the grid),

⋄ GetSnappedFeature: utility function to project a given geometry onto the grid, de-
pending upon the type of the object, e.g. observation points to cell-centers, thin dams to
flow links, etc.

60 of 81 Deltares

DRAF
T

Plugins

The latter function is purely exposed through the interface IGridOperationApi with an
adapter2 implementation.
Note that there exist additional subroutines in the interface of flowfm.dll which are not exposed
by the API above. These methods are used for interpolation and cell-finding algorithms in the
DeltaShell framework and exposed through the GeometryApi class. In the installation,
the native library is actually included twice: once as kernel for the FM plugin and once as
geometry utility library, under the name geometry.dll.

9.1.3 The File System

The bulk of the data is passed to the dflowfm kernel by means of files; it is actually im-
possible to initialize a model in the kernel without providing a master definition (mdu) file.
This file, with all its referenced sub-files, constitutes the storage of the model in DeltaShell
as well. Hence, loading and saving a model uses the exact same code as importing and
exporting to mdu, where the latter is also called when initializing a model run. The mdu-
file consists of a grouped set of keywords with corresponding values, and optional com-
ment. The set of keywords with corresponding value types, bounds, defaults and descrip-
tions are listed in a csv-file named dflowfm-properties, which is distributed with the applica-
tion and parsed at runtime by the plugin. This creates a dynamic list of model properties in
WaterFlowFMModelDefinition, which will be matched with each mdu-file that is being
read or written. Moreover, the file provides essential UI information such as conditions un-
der which certain controls are visible/enabled. These conditions are parsed and converted to
predicates used by the WaterFlowFMModelView class.

The mdu-file references various (sub-)files containing spatial data or time series. The read-
ing/writing of the master definition file, the MduFile class, takes care of these sub-files by
cascading read/write operations. For complete list of the sub-files we refer to the FM user
manual. The most important file is the external forcings file that holds spatial information
on initial conditions and wind fields, but possible also boundary conditions in the deprecated
format (pli-file with tim-files or cmp-files). Newly created boundary conditions are always seri-
alized to bc-files, which are referenced by the boundary external forcings file.

The file-based nature of FM makes saving and loading of the model slightly cumbersome; it is
therefore essential for developers to keep in mind the different states that the WaterFlowFMModel
can adopt:

⋄ Pure memory state: when calling the default constructor from C# or from a script, the
resulting instance will have its property MduFilePath equal to the null-string. Hence
there are no files corresponding to the instance. The model name will be the default
"FlowFM", which will also be the name of the mdu file upon serialization at this time.

⋄ Temporary state: when calling the constructor with the mdu-path argument, this will be the
value of MduFilePath, and all data will be read from the referenced sub-file. Possible
output map- or his-files will be attached to function stores for lazy readout.

⋄ Saved state: Upon saving, DeltaShell creates a data folder next to the dsproj-file in which
two folders are created: the first which has the same name as the mdu-file and all input
data files are written to it, and an empty directory <mdufile>_output, which is called
the explicit working directory. The property MduFilePath takes the name of the master
definition file within the local data directory.

⋄ Running state: Upon execution, the kernel will run inside the WorkingDirectory. If
the model was never saved, this directory will be randomly named and created within
the user Temp directory, otherwise the working directory is the explicit working directory
mentioned above.

2The Adapter design pattern allows otherwise incompatible classes / interfaces to work together by converting
the interface of one class into an interface expected by the clients.

Deltares 61 of 81

DRAF
T

Delta Shell, Technical Reference Manual

Note that since the underlying kernel needs an mdu file to initialize, the plugin frequently uses
a ’stripped’ copy of the definition file in a temporary directory to call certain API functions, for
example when fetching snapped feature geometries.

9.1.4 The Unstructured Grid

One of the more intricate and error-prone features of the FM plugin is the way in which the
grid is handled. The main difficulty lies in the fact that some of the data in the unstructured
grid, i.e. the list of flow links is actually dependent upon the geometries of model features
like thin dams, dry points and boundary locations. The computing algorithm for these flow
links is within the computational core, but it requires initialization of d-flow FM with the master
definition file of the model. After this, a map-file is written by the kernel that contains the flow
link data, which is read to ’dress’ the unstructured grid. The essential method in this workflow
is ReloadGrid, which ensures the file-based state of the grid (net-file) and the memory
state are synchronized. The various moments for reloading the grid are

Insert model grid

Read grid from net-file

Read grid from
map-fileInitialize apiWrite net-file?

Write grid to NetCDF
Fail

Successno

yes

Figure 9.3: Control structure of the ReloadGrid implementation

⋄ Default constructor: the grid is empty, no action is taken.
⋄ Constructor with mdu-file path and net-file: we check whether there is a corresponding

map-file. If so, the grid including flow links is read from this output, otherwise ReloadGrid
is called with the first argument set to false.

⋄ Import of a net-file: the net-file is copied to the mdu-directory and ReloadGrid is called
with the first argument set to false.

⋄ Exit of RgfGrid after grid edits: same actions as importing a net-file.
⋄ Setting the grid from a script or test: it is recommended to call ReloadGrid with first

element set to true if you wish to run the model with the new grid or get the correct flow
links. Be aware that the grid instance in the model will change after this.

The last step of the ReloadGrid method is inserting the resulting grid into the model in-
stance. The grid setter will determine whether the new instance differs from the current in-
stance, and if so it will re-evaluate all the operations on the spatial data, and substitute the
new grid.

9.1.5 Boundary conditions

The main philosophy in D-Flow FM regarding spatial features is that they exist independently
from the grid; it is sufficient to provide their geometries in .pli, .xyz or .pol format, and the
kernel performs the necessary preprocessing to project them onto the mesh. Hence, in our
object model all these features are represented by classes that contain no more data than the
standard Feature class, plus a name identifier. These features are usually contained in the
hydro area of the model, with exception of the boundaries and sources and sink geometries
(’pipes’).
These features are accompanied with time series data (or some other parameterization of the
flow dynamics), we have chosen a design which makes a clear distinction between the feature
geometry and model data3 that is defined on it.

3In contrast with e.g. structures in FM, whose time series are defined within the class.

62 of 81 Deltares

DRAF
T

Plugins

For instance, the FM model contains a list of pipes –line features– and a separate list of
SourceSink objects that define a discharge time series associated with a feature. The
model itself is responsible for synchronizing both lists. The design of boundary conditions re-
sembles this, with the distinction that the correspondence in not one-to-one: multiple boundary
conditions can be associated with a single boundary feature. Furthermore, multiple functions
may be contained inside condition, as they are generally associated with the coordinates that
define the polyline feature geometry, although there exceptions (e.g. discharge boundaries).

Boundary conditions in the FM suite have a common interface defined by IBoundaryCondition.

[h]
WaveBoundaryConditionFlowBoundaryCondition

BoundaryCondition

IBoundaryCondition

IFeature Feature {get;}
IList<IFunction> PointData {get;}
IList<int> DataPoints {get;}
BoundaryConditionDataType DataType {get;}

Figure 9.4: Boundary condition object model in FMSuite

It contains the feature, the functions defining the actual positions, a list of indices defining the
location of this data4 and a DataType enumerable which determines the parameterization of
the data. This interface has a generic abstract implementation which allows both the FM plu-
gin as well as the Wave plugin to use it for their boundary conditions. Multiple conditions (with
various FlowBoundaryQuantityTypes) can be defined on the same boundary, but there
is a limited set of valid combinations defined in ’dictionaries / lists’ in the child class. Such flow
boundary conditions are grouped into a BoundaryConditionSet in the FM model. The
single interface has allowed for both FM and Wave to also use a common view on their bound-
ary conditions, the BoundaryConditionEditor. However there are sub-controls within
this editor that are injected by the plugins to customize the interface. Historically, boundary
conditions were listed in the external forcings file, and every single conditions meant a sin-
gle pli-file with a set of corresponding data files5. Nowadays we have bc-files containing all
boundary data that belongs to a certain FlowBoundaryQuantityType. These files shall
soon be used for SOBEK (flow 1d) boundary conditions as well.

9.1.6 GUI

todo...

9.1.7 Tests

To validate the spatial operations we have set up two test projects :

1 DeltaShell.Plugins.FMSuite.FlowFM.Tests : Tests to validate the workings of the FM plugin
and GUI.

2 DeltaShell.Plugins.FMSuite.Common.Tests : Tests to validate the workings of common

Deltares, 2016. “BIBTEX key with no entry, needed if no citations are made in the document.”

4There should be no concerns about geometry points with no data defined on them; the kernel performs
automatic spatial interpolation along the polyline.

5If such a set of files is read and no new boundaries are added, this is still the output format

Deltares 63 of 81

DRAF
T

Delta Shell, Technical Reference Manual

64 of 81 Deltares

DRAF
T

A Tutorial: start a new plugin

The goal of this tutorial is to show how a new plugin for the Delta Shell framework can be
developed.

A.1 Add new plugin

Open the solution in visual studio and in the solution explorer navigate to (Src | Plugins).
Right click it and add a new solution folder named ’VolumeModel’. Right click that folder and
choose (Add | New Project...). Choose Template C#, .NET Framework 4.5, Class Library. For
the name enter ’DeltaShell.Plugins.VolumeModel’. The location should match the solution-
folder that was just created (i.e. browse to it using the ’Browse...’ button). In the solution folder
also add a project named ’DeltaShell.Plugins.VolumeModel.Gui’, using the same steps.

For both projects the following actions have to be performed:

A.1.1 Edit AssemblyInfo.cs

Add the bottom of the file add the following code
[assembly: Addin]
[assembly: AddinDependency("DeltaShellApplication", "1.0")]

A.1.2 Edit project’s csproj file

The project’s .csproj file needs te be adapted. This can be done either directly on the file
system, by opening the file in a project editor. The second option is to unload the project in
Visual Studio (one of the options in the right click context menu) and then choose to edit the
.csproj (again an option in the right click context menu when the project is unloaded). After
editing be sure to reload the project.
<Project>
...
...
<Import Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets" />
<PropertyGroup>
<IsPluginComponent>true</IsPluginComponent>
<PluginName>$(ProjectName)</PluginName>

</PropertyGroup>
<Import Project="..\..\..\..\build\DeltaShell.targets" />
<Import Project="..\..\..\..\packages\PostSharp.2.1.7.28\tools\PostSharp.

targets" Condition="Exists('..\..\..\..\packages\PostSharp.2.1.7.28\
tools\PostSharp.targets')" />

<PropertyGroup>
<PreBuildEvent>cmd /c $(SolutionDir)\svn_insert_version.cmd $(ProjectDir)

\Properties
</PreBuildEvent>

</PropertyGroup>
<!-- To modify your build process, add your task inside one of the targets

below and uncomment it.
Other similar extension points exist, see Microsoft.Common.targets.

<Target Name="BeforeBuild">
</Target>
<Target Name="AfterBuild">
</Target>

-->
</Project>

Notice especially the first PropertyGroup that defines that this project represents a plugin. By
importing project build/DeltaShell.targets it is ensured that any resource specific to this plugin

Deltares 65 of 81

DR
AF
T

Delta Shell, Technical Reference Manual

(

TODO A.1: see section TODOTODO

) gets copied to the correct location.

A.1.3 Add code

Remove file Class1.cs. Right click the project and select (Add | Class...). Choose the empty
class definition simply labelled as Class and give it the name VolumeModelApplicationPlugin.

Edit the code to make it look like this:

using DelftTools.Shell.Core;
using Mono.Addins;

namespace DeltaShell.Plugins.VolumeModel
{

[Extension(typeof(IPlugin))]
public class VolumeModelApplicationPlugin : ApplicationPlugin
{

public override string Name
{

get { return "Volume model application"; }
}

public override string Description
{

get { return "Application plugin of the volume model application";
}

}

public override string Version
{

get { return "1.0"; }
}

}
}

Add another class using the same steps and name it VolumeModelGuiPlugin. Make it look
like this:

using DelftTools.Shell.Core;
using DelftTools.Shell.Gui;
using Mono.Addins;

namespace DeltaShell.Plugins.VolumeModel
{

[Extension(typeof(IPlugin))]
public class VolumeModelGuiPlugin : GuiPlugin
{

public override string Name
{

get { return "Volume model application (UI)"; }
}

public override string Description
{

get { return "Gui plugin of the volume model application"; }
}

public override string Version
{

get { return "1.0"; }

66 of 81 Deltares

DR
AF
T

Tutorial: start a new plugin

}
}

}

A.1.4 Result so far

To check if all went well so far, run the application and open the About window (File | Help |
About). Ensure both the application plugin and the gui plugin present themselves in the list
of loaded plugin that appears in the listbox.

A.2 Import time series from WaterML2 files

We will now create and register a WaterML2 importer class, making it possible to import
WaterML2 files (containing time series data) into a Delta Shell project.

A.2.1 Create a new importer class

To the plugin project add a new folder named Importers. In this folder, create a new classed
named WaterML2TimeSeriesImporter and make it look like this1:
using System;
using System.Collections.Generic;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Xml.Linq;
using DelftTools.Functions;
using DelftTools.Functions.Generic;
using DelftTools.Shell.Core;
using log4net;

namespace DeltaShell.Plugins.VolumeModel.Importers
{

/// <summary>
/// Importer for importing WaterML2 data to time series objects
/// </summary>
public class WaterML2TimeSeriesImporter : IFileImporter
{

private static readonly ILog Log = LogManager.GetLogger(typeof(
WaterML2TimeSeriesImporter)); // Handle for writing log messages

/// <summary>
/// The name of the importer
/// </summary>
/// <remarks>Used in importer selection dialogs</remarks>
public string Name
{

get { return "WaterML2 time series importer"; }
}

/// <summary>
/// The category of the importer
/// </summary>
/// <remarks>Used in importer selection dialogs</remarks>
public string Category
{

get { return "Volume model importers"; }
}

1Class WaterML2TimeSeriesImporter is derived from the IFileImporter interface so that it can be registered in
the application plugin (see the next step). The comments in the code explain the different parts of the importer
implementation.

Deltares 67 of 81

DR
AF
T

Delta Shell, Technical Reference Manual

/// <summary>
/// The image of the importer
/// </summary>
/// <remarks>Used in importer selection dialogs</remarks>
public Bitmap Image
{

get { return new Bitmap(16, 16); }
}

/// <summary>
/// The data types supported by the importer
/// </summary>
public IEnumerable<Type> SupportedItemTypes
{

get { yield return typeof(TimeSeries); }
}

/// <summary>
/// Indicates that the importer can import at root level (folder/

project). In other
/// words, indicates that the <see cref="ImportItem"/> method can be

called without
/// specifying a time series target...
/// </summary>
public bool CanImportOnRootLevel
{

get { return true; }
}

/// <summary>
/// The file filter of the importer
/// </summary>
/// <remarks>Used in file selection dialogs</remarks>
public string FileFilter
{

get { return "WaterML2 files|*.XML"; }
}

/// <summary>
/// Path where external data files can be copied into
/// </summary>
/// <remarks>Not relevant in this tutorial</remarks>
public string TargetDataDirectory { get; set; }

/// <summary>
/// Whether or not an import task should be cancelled
/// </summary>
/// <remarks>Not part of this tutorial</remarks>
public bool ShouldCancel { get; set; }

/// <summary>
/// Fired when progress has been changed
/// </summary>
/// <remarks>Not a part of this tutorial</remarks>
public ImportProgressChangedDelegate ProgressChanged { get; set; }

/// <summary>
/// Imports WaterML2 data from the file with path <paramref name="path

"/> to the
/// time series <paramref name="target"/>
/// </summary>
/// <remarks>
/// The target parameter is optional. If a target time series is

specified, the
/// importer should import the WaterML2 data to this existing time

series. When

68 of 81 Deltares

DRAF
T

Tutorial: start a new plugin

// no target is set, the importer should create a new time series.
/// </remarks>
public object ImportItem(string path, object target = null)
{

// Check the file path
if (!File.Exists(path))
{

Log.Error("File does not exist");

return null;
}

// Obtain a new time series or check the provided target for being
a time series

var timeSeries = target == null
? new TimeSeries { Name = Path.GetFileNameWithoutExtension(path)

, Components = { new Variable<double>() } }
: target as TimeSeries;

if (timeSeries == null)
{

Log.Error("Target is of the wrong type (should be time series)")
;

return null;
}

// Load the WaterML2 XML document
var doc = XDocument.Load(path);

// Obtain the document elements
var xElements = doc.Descendants();

// Obtain the measurement TVP tags
var measurements = xElements.Where(element => element.Name.

LocalName == "MeasurementTVP");

// Get the corresponding time and value for each measurement tag
foreach (var measurement in measurements)
{

var time = DateTime.Parse(measurement.Elements().First(e => e.
Name.LocalName == "time").Value);

var value = double.Parse(measurement.Elements().First(e => e.
Name.LocalName == "value").Value);

timeSeries[time] = value;
}

// Return the time series
return timeSeries;

}
}

}

In order to successfully build this code some references need to be added to the project.
Right click on the project’s <References> folder and select Add Reference.... Then choose
the Browse... button to select file <log4net.dll> from the <lib> folder from the Delta Shell
code installation location. In a similar fashion add a reference to <System.Drawing> which
resides in the Framework Assemblies (i.e. do not browse there but select it from the header (
Assemblies | Framework).

Deltares 69 of 81

DR
AF
T

Delta Shell, Technical Reference Manual

A.2.2 Register the importer in the application plugin class

Register the importer in the application plugin by adding the following code to VolumeMode-
lApplicationPlugin.cs:

using System.Collections.Generic;
using DeltaShell.Plugins.VolumeModel.Importers;

and

public override IEnumerable<IFileImporter> GetFileImporters()
{

yield return new WaterML2TimeSeriesImporter();
}

Delta Shell is now able to use this importer when importing data on new or existing time series
objects.

A.2.3 Create test data

Select all text from section A.8 and copy it into a text editor so you can save it to a file named
<WaterML2_precipitation_data.XML>.

A.2.4 Test importer

Run the applicaton and start an import by right clicking on the project and selecting import....
In the dialog that is presented the newly added WaterML2 time series importer appears. Se-
lect it and press OK. A file dialog appears to select the file to import. Navigate to the file you
created in section A.2.3, select it and finish the wizard. Upon conclusion a new time series
object containing the data from the imported file is added to the project tree. Double click it to
investigate it using Delta Shell’s built in table and graph viewer.

In the steps above a project level import has been executed, thereby creating an entirely new
time series item. The importer is also capable of importing into existing time series items by
right clicking such an object and selecting Import....

For example, test this by:

⋄ clearing (a part) of the imported time series data via the table view.
⋄ importing the downloaded WaterML2 XML file directly onto this modified time series item

(right click on the time series item | import ...)

A.3 Create a simple hydrological model

We will add a simple hydrological volume model to the plugin, allowing a user to run the
volume model and inspect some simple spatio-temporal output results.

A.3.1 Create a new model class

To the plugin project add a new folder named Models. In this folder, create a new class named
VolumeModel and make it look like this2:

using System;
using System.Linq;
using DelftTools.Functions;

2The model class is derived from the ModelBase class in order to automatically implement some basic time
dependent modeling logic. The comments in the code explain the different parts of the model implementation.

70 of 81 Deltares

DR
AF
T

Tutorial: start a new plugin

using DelftTools.Functions.Generic;
using DelftTools.Hydro;
using DelftTools.Shell.Core.Workflow;
using DelftTools.Shell.Core.Workflow.DataItems;
using NetTopologySuite.Extensions.Coverages;

namespace DeltaShell.Plugins.VolumeModel.Models
{

public class VolumeModel : ModelBase
{

private readonly DrainageBasin basin;
private readonly TimeSeries precipitation;
private readonly FeatureCoverage volume;

/// <summary>
/// Creates a volume model
/// </summary>
public VolumeModel()
{

// Create the input items of the volume model
basin = new DrainageBasin();
precipitation = new TimeSeries { Components = { new Variable<double

>("Precipitation") } };

// Create the output item of the volume model
volume = new FeatureCoverage("Output data")

{
IsTimeDependent = true,
Arguments = { new Variable<Catchment>("Catchment") {

FixedSize = 0 } },
Components = { new Variable<double>("Volume") },

};

// Wrap fields as input/output data items
DataItems.Add(new DataItem(precipitation, "Precipitation", typeof(

TimeSeries), DataItemRole.Input, "PrecipitationTag"));
DataItems.Add(new DataItem(basin, "Basin", typeof(DrainageBasin),

DataItemRole.Input, "BasinTag"));
DataItems.Add(new DataItem(volume, "Volume", typeof(FeatureCoverage

), DataItemRole.Output, "VolumeTag"));
}

/// <summary>
/// The precipitation time series: P = P(t) [L/T]. Input of the model.
/// </summary>
public TimeSeries Precipitation
{

get { return precipitation; }
}

/// <summary>
/// The drainage basin (set of catchments). Input of the model.
/// </summary>
public DrainageBasin Basin
{

get { return basin; }
}

/// <summary>
/// Time-dependent feature coverage containing the volume of water per

catchment: V = V(t, c) [L3/T]. Output of the model.
/// </summary>
public FeatureCoverage Volume
{

get { return volume; }
}

Deltares 71 of 81

DR
AF
T

Delta Shell, Technical Reference Manual

/// <summary>
/// The initialization of model runs
/// </summary>
protected override void OnInitialize()
{

// Clear any previous output
volume.Clear();

// Ensure the coordinate system of the volume output is the same as
the catchments input (basin)

volume.CoordinateSystem = basin.CoordinateSystem;

// Ensure at least one catchment and one precipitation value is
present

ValidateInputData();

// Initialize the output feature coverage
volume.Features.AddRange(basin.Catchments);
volume.FeatureVariable.FixedSize = basin.Catchments.Count;
volume.FeatureVariable.AddValues(basin.Catchments);

}

/// <summary>
/// The actual calculation during model run
/// </summary>
protected override bool OnExecute()
{

// Loop all times
foreach (var time in precipitation.Time.Values)
{

// Obtain the precipitation value for the current time
var p = (double) precipitation[time];

// Calculate a volume value for every catchment based on
catchment area and precipitation value

var volumes = basin.Catchments.Select(c => c.AreaSize * p);

// Add the calculated volume values to the output feature
coverage

volume[time] = volumes;
}

return true;
}

private void ValidateInputData()
{

var hasCatchments = basin.Catchments.Any();
var hasPrecipitationData = precipitation.Time.Values.Any();

if (!hasCatchments && !hasPrecipitationData)
{

throw new InvalidOperationException("At least one catchment and
one precipitation value should be present");

}

if (!hasCatchments)
{

throw new InvalidOperationException("At least one catchment
should be present");

}

if (!hasPrecipitationData)
{

throw new InvalidOperationException("At least one precipitation

72 of 81 Deltares

DRAF
T

Tutorial: start a new plugin

value should be present");
}

}
}

}

A.3.2 Register the model in the application plugin class

A.3.3 Test model functionality

A.4 Customize model properties

A.4.1 Create a new object properties class

A.4.2 Register the object properties in the gui plugin class

A.4.3 Test properties

A.5 Show model data on a map

A.5.1 Create a new map layer provider

A.5.2 Register the map layer provider in the gui plugin class

A.5.3 Test map layer provider

A.6 Set up a custom model view

A.6.1 Create a new view

A.6.2 Register the view in the gui plugin class

A.6.3 Test view

A.7 Create a ribbon button

A.7.1 Create a new gui command

A.7.2 Create a new ribbon control

A.7.3 Register the ribbon control in the gui plugin class

Deltares 73 of 81

DR
AF
T

Delta Shell, Technical Reference Manual

A.7.4 Test ribbon button

A.8 WaterML2 test data
<?xml version="1.0" encoding="UTF-8"?>
<wml2:Collection xmlns:wml2="http://www.opengis.net/waterml/2.0" xmlns:xsi="

http://www.w3.org/2001/XMLSchema-instance" xmlns:gml="http://www.opengis
.net/gml/3.2" xmlns:om="http://www.opengis.net/om/2.0" xmlns:sa="http://
www.opengis.net/sampling/2.0" xmlns:sams="http://www.opengis.net/
samplingSpatial/2.0" xmlns:xlink="http://www.w3.org/1999/xlink" xsi:
schemaLocation="http://www.opengis.net/waterml/2.0 http://www.opengis.
net/waterml/2.0/waterml2.xsd" gml:id="Ki.Col.1">

<gml:description>KISTERS KiWIS WaterML2.0</gml:description>
<wml2:metadata>

<wml2:DocumentMetadata gml:id="Ki.DocMD.1">
<wml2:generationDate>2012-06-12T12:10:12.670+00:00</wml2:

generationDate>
<wml2:generationSystem>KISTERS KiWIS</wml2:

generationSystem>
</wml2:DocumentMetadata>

</wml2:metadata>
<wml2:temporalExtent>

<gml:TimePeriod gml:id="Ki.TempExt.1">
<gml:beginPosition>1990-09-01T00:00:00.000+01:00</gml:

beginPosition>
<gml:endPosition>1990-09-30T00:00:00.000+01:00</gml:

endPosition>
</gml:TimePeriod>

</wml2:temporalExtent>
<wml2:observationMember>

<om:OM_Observation gml:id="Ki.OM_Obs.1">
<om:phenomenonTime>

<gml:TimePeriod gml:id="Ki.ObsTime.1">
<gml:beginPosition>1990-09-01T00

:00:00.000+01:00</gml:beginPosition>
<gml:endPosition>1990-09-30T00

:00:00.000+01:00</gml:endPosition>
</gml:TimePeriod>

</om:phenomenonTime>
<om:resultTime>

<gml:TimeInstant gml:id="Ki.resTime.1">
<gml:timePosition>1990-09-30T00

:00:00.000+01:00</gml:timePosition>
</gml:TimeInstant>

</om:resultTime>
<om:procedure xlink:href="http://kiwis.kisters.de/ts/Day.

Cmd" xlink:title="10 - DailyMean"/>
<om:observedProperty xlink:href="http://kiwis.kisters.de/

parameters/557" xlink:title="Q"/>
<om:featureOfInterest xlink:href="http://kiwis.kisters.de/

stations/1732100" xlink:title="ATHIEME"/>
<om:result>

<wml2:MeasurementTimeseries gml:id="Ki.Ts.132042">
<wml2:temporalExtent>

<gml:TimePeriod gml:id="Ki.TsTime.1">
<gml:beginPosition>1990-09-01T00

:00:00.000+01:00</gml:
beginPosition>

<gml:endPosition>1990-09-30T00
:00:00.000+01:00</gml:
endPosition>

</gml:TimePeriod>
</wml2:temporalExtent>
<wml2:defaultPointMetadata>

<wml2:DefaultTVPMeasurementMetadata>
<wml2:interpolationType xlink:href

="http://www.opengis.net/def/

74 of 81 Deltares

DR
AF
T

Tutorial: start a new plugin

waterml/2.0/interpolationType/
ConstPrec" xlink:title="
Constant in preceding interval
"/>

<wml2:qualifier xlink:href="http
://kiwis.kisters.de/
statusCodes/40" xlink:title="
40"/>

<wml2:uom uom="cumec"/>
</wml2:DefaultTVPMeasurementMetadata>

</wml2:defaultPointMetadata>
<wml2:point>

<wml2:MeasurementTVP>
<wml2:time>1990-09-01T00

:00:00.000+01:00</wml2:time>
<wml2:value>1930</wml2:value>

</wml2:MeasurementTVP>
</wml2:point>
<wml2:point>

<wml2:MeasurementTVP>
<wml2:time>1990-09-02T00

:00:00.000+01:00</wml2:time>
<wml2:value>1820</wml2:value>

</wml2:MeasurementTVP>
</wml2:point>
<wml2:point>

<wml2:MeasurementTVP>
<wml2:time>1990-09-03T00

:00:00.000+01:00</wml2:time>
<wml2:value>1710</wml2:value>

</wml2:MeasurementTVP>
</wml2:point>
<wml2:point>

<wml2:MeasurementTVP>
<wml2:time>1990-09-04T00

:00:00.000+01:00</wml2:time>
<wml2:value>1190</wml2:value>

</wml2:MeasurementTVP>
</wml2:point>
<wml2:point>

<wml2:MeasurementTVP>
<wml2:time>1990-09-05T00

:00:00.000+01:00</wml2:time>
<wml2:value>1290</wml2:value>

</wml2:MeasurementTVP>
</wml2:point>
<wml2:point>

<wml2:MeasurementTVP>
<wml2:time>1990-09-06T00

:00:00.000+01:00</wml2:time>
<wml2:value>1250</wml2:value>

</wml2:MeasurementTVP>
</wml2:point>
<wml2:point>

<wml2:MeasurementTVP>
<wml2:time>1990-09-07T00

:00:00.000+01:00</wml2:time>
<wml2:value>1300</wml2:value>

</wml2:MeasurementTVP>
</wml2:point>
<wml2:point>

<wml2:MeasurementTVP>
<wml2:time>1990-09-08T00

:00:00.000+01:00</wml2:time>
<wml2:value>1080</wml2:value>

</wml2:MeasurementTVP>

Deltares 75 of 81

DR
AF
T

Delta Shell, Technical Reference Manual

</wml2:point>
<wml2:point>

<wml2:MeasurementTVP>
<wml2:time>1990-09-09T00

:00:00.000+01:00</wml2:time>
<wml2:value>1000</wml2:value>

</wml2:MeasurementTVP>
</wml2:point>
<wml2:point>

<wml2:MeasurementTVP>
<wml2:time>1990-09-10T00

:00:00.000+01:00</wml2:time>
<wml2:value>890</wml2:value>

</wml2:MeasurementTVP>
</wml2:point>
<wml2:point>

<wml2:MeasurementTVP>
<wml2:time>1990-09-11T00

:00:00.000+01:00</wml2:time>
<wml2:value>890</wml2:value>

</wml2:MeasurementTVP>
</wml2:point>
<wml2:point>

<wml2:MeasurementTVP>
<wml2:time>1990-09-12T00

:00:00.000+01:00</wml2:time>
<wml2:value>1060</wml2:value>

</wml2:MeasurementTVP>
</wml2:point>
<wml2:point>

<wml2:MeasurementTVP>
<wml2:time>1990-09-13T00

:00:00.000+01:00</wml2:time>
<wml2:value>1320</wml2:value>

</wml2:MeasurementTVP>
</wml2:point>
<wml2:point>

<wml2:MeasurementTVP>
<wml2:time>1990-09-14T00

:00:00.000+01:00</wml2:time>
<wml2:value>1450</wml2:value>

</wml2:MeasurementTVP>
</wml2:point>
<wml2:point>

<wml2:MeasurementTVP>
<wml2:time>1990-09-15T00

:00:00.000+01:00</wml2:time>
<wml2:value>1500</wml2:value>

</wml2:MeasurementTVP>
</wml2:point>
<wml2:point>

<wml2:MeasurementTVP>
<wml2:time>1990-09-16T00

:00:00.000+01:00</wml2:time>
<wml2:value>1520</wml2:value>

</wml2:MeasurementTVP>
</wml2:point>
<wml2:point>

<wml2:MeasurementTVP>
<wml2:time>1990-09-17T00

:00:00.000+01:00</wml2:time>
<wml2:value>1180</wml2:value>

</wml2:MeasurementTVP>
</wml2:point>
<wml2:point>

<wml2:MeasurementTVP>

76 of 81 Deltares

DR
AF
T

Tutorial: start a new plugin

<wml2:time>1990-09-18T00
:00:00.000+01:00</wml2:time>

<wml2:value>920</wml2:value>
</wml2:MeasurementTVP>

</wml2:point>
<wml2:point>

<wml2:MeasurementTVP>
<wml2:time>1990-09-19T00

:00:00.000+01:00</wml2:time>
<wml2:value>1060</wml2:value>

</wml2:MeasurementTVP>
</wml2:point>
<wml2:point>

<wml2:MeasurementTVP>
<wml2:time>1990-09-20T00

:00:00.000+01:00</wml2:time>
<wml2:value>1290</wml2:value>

</wml2:MeasurementTVP>
</wml2:point>
<wml2:point>

<wml2:MeasurementTVP>
<wml2:time>1990-09-21T00

:00:00.000+01:00</wml2:time>
<wml2:value>1250</wml2:value>

</wml2:MeasurementTVP>
</wml2:point>
<wml2:point>

<wml2:MeasurementTVP>
<wml2:time>1990-09-22T00

:00:00.000+01:00</wml2:time>
<wml2:value>1520</wml2:value>

</wml2:MeasurementTVP>
</wml2:point>
<wml2:point>

<wml2:MeasurementTVP>
<wml2:time>1990-09-23T00

:00:00.000+01:00</wml2:time>
<wml2:value>1520</wml2:value>

</wml2:MeasurementTVP>
</wml2:point>
<wml2:point>

<wml2:MeasurementTVP>
<wml2:time>1990-09-24T00

:00:00.000+01:00</wml2:time>
<wml2:value>1200</wml2:value>

</wml2:MeasurementTVP>
</wml2:point>
<wml2:point>

<wml2:MeasurementTVP>
<wml2:time>1990-09-25T00

:00:00.000+01:00</wml2:time>
<wml2:value>960</wml2:value>

</wml2:MeasurementTVP>
</wml2:point>
<wml2:point>

<wml2:MeasurementTVP>
<wml2:time>1990-09-26T00

:00:00.000+01:00</wml2:time>
<wml2:value>1230</wml2:value>

</wml2:MeasurementTVP>
</wml2:point>
<wml2:point>

<wml2:MeasurementTVP>
<wml2:time>1990-09-27T00

:00:00.000+01:00</wml2:time>
<wml2:value>1270</wml2:value>

Deltares 77 of 81

DRAF
T

Delta Shell, Technical Reference Manual

</wml2:MeasurementTVP>
</wml2:point>
<wml2:point>

<wml2:MeasurementTVP>
<wml2:time>1990-09-28T00

:00:00.000+01:00</wml2:time>
<wml2:value>1300</wml2:value>

</wml2:MeasurementTVP>
</wml2:point>
<wml2:point>

<wml2:MeasurementTVP>
<wml2:time>1990-09-29T00

:00:00.000+01:00</wml2:time>
<wml2:value>1410</wml2:value>

</wml2:MeasurementTVP>
</wml2:point>
<wml2:point>

<wml2:MeasurementTVP>
<wml2:time>1990-09-30T00

:00:00.000+01:00</wml2:time>
<wml2:value>1390</wml2:value>

</wml2:MeasurementTVP>
</wml2:point>

</wml2:MeasurementTimeseries>
</om:result>

</om:OM_Observation>
</wml2:observationMember>

</wml2:Collection>

78 of 81 Deltares

DRAF
T

PO Box 177
2600 MH Delft
Boussinesqweg 1
2629 HV Delft
The Netherlands

+31 (0)88 335 81 88
software@deltares.nl
www.deltares.nl/software

DRAF
T

DRAF
T

	List of Figures
	List of To Do's
	1 Introduction
	1.1 Overview of the directory structure
	1.2 Plugins

	2 The Delta Shell application
	2.1 Introduction
	2.2 Project and project items
	2.3 Activities and models
	2.4 Hydro models and regions
	2.5 Data items and model coupling
	2.6 Functions and spatial data
	2.6.1 Functions
	2.6.2 Coverages
	2.6.3 Function filters
	2.6.4 Evaluating a function
	2.6.5 Function store

	2.7 Model validation

	3 The Delta Shell GUI
	3.1 Overview
	3.2 The ribbon
	3.3 Docking
	3.4 Windows and views
	3.5 The GUI Context Manager
	3.6 Treeviews
	3.7 Project explorer
	3.8 Property grid
	3.8.1 Static declaration of properties
	3.8.2 Dynamic declaration of properties
	3.8.3 Property categories and read-only properties

	3.9 Time navigator

	4 Eventing
	4.1 PostSharp in Delta Shell
	4.2 Undo/redo
	4.3 Accessing the GUI thread from a worker thread

	5 Persistence
	5.1 History of persistence in Delta Shell
	5.2 Persistence with nHibernate
	5.2.1 Overall set-up
	5.2.2 Mapping files
	5.2.3 How to enable or disable lazy loading
	5.2.4 How to solve: sqlite - max 64 tables in join
	5.2.5 How to use cascades
	5.2.6 How to create a legacy mapping for a class where one property has changed
	5.2.7 How to create a legacy mapping for a class that has been split up
	5.2.8 How to create a legacy mapping for a class that has been merged
	5.2.9 How to create a legacy mapping for a class that has been changed to a hierarchy of classes
	5.2.10 How to deal with class renames or changes of namespace

	5.3 File-based persistence

	6 Geospatial data and visualisation
	6.1 GeoAPI
	6.2 NetTopologySuite
	6.3 SharpMap
	6.4 The central map and its panel
	6.5 Spatial operations
	6.5.1 Introduction
	6.5.2 Object model
	6.5.3 Framework Embedding
	6.5.4 Spatial Operations
	6.5.5 GUI
	6.5.6 Tests

	7 Other topics
	7.1 Tables and graphs
	7.2 Basic Modeling Interface (BMI)
	7.3 Remote Instance Container
	7.4 NetCDF
	7.5 Scripting using Python

	8 Programming help
	8.1 NuGet packages
	8.2 32-bit vs 64-bit
	8.3 Build process
	8.4 Creating an installer
	8.5 Testing
	8.6 Code conventions
	8.7 Localisation
	8.8 Licensing

	9 Plugins
	9.1 Flexible Mesh
	9.1.1 Introduction
	9.1.1.1 Overview

	9.1.2 The FlexibleMeshModelApi Class
	9.1.3 The File System
	9.1.4 The Unstructured Grid
	9.1.5 Boundary conditions
	9.1.6 GUI
	9.1.7 Tests

	A Tutorial: start a new plugin
	A.1 Add new plugin
	A.1.1 Edit AssemblyInfo.cs
	A.1.2 Edit project's csproj file
	A.1.3 Add code
	A.1.4 Result so far

	A.2 Import time series from WaterML2 files
	A.2.1 Create a new importer class
	A.2.2 Register the importer in the application plugin class
	A.2.3 Create test data
	A.2.4 Test importer

	A.3 Create a simple hydrological model
	A.3.1 Create a new model class
	A.3.2 Register the model in the application plugin class
	A.3.3 Test model functionality

	A.4 Customize model properties
	A.4.1 Create a new object properties class
	A.4.2 Register the object properties in the gui plugin class
	A.4.3 Test properties

	A.5 Show model data on a map
	A.5.1 Create a new map layer provider
	A.5.2 Register the map layer provider in the gui plugin class
	A.5.3 Test map layer provider

	A.6 Set up a custom model view
	A.6.1 Create a new view
	A.6.2 Register the view in the gui plugin class
	A.6.3 Test view

	A.7 Create a ribbon button
	A.7.1 Create a new gui command
	A.7.2 Create a new ribbon control
	A.7.3 Register the ribbon control in the gui plugin class
	A.7.4 Test ribbon button

	A.8 WaterML2 test data

