Simulation software for safe sustainable and future deltas

DELFT3D FM SUITE

Deltares system

D-Waves

Deltares

User Manual

D-Waves

Simulation of short-crested waves with SWAN

User Manual

Version: 1.2 Revision: 78359

25 April 2024

D-Waves, User Manual

Published and printed by:

Deltares Boussinesqweg 1 2629 HV Delft P.O. 177 2600 MH Delft The Netherlands telephone: +31 88 335 82 73 e-mail: Information www: Deltares

For sales contact: telephone: +31 88 335 81 88 e-mail: Sales www: Sales & Support For support contact:

telephone: +31 88 335 81 00 e-mail: Support www: Sales & Support

Copyright © 2024 Deltares

All rights reserved. No part of this document may be reproduced in any form by print, photo print, photo copy, microfilm or any other means, without written permission from the publisher: Deltares.

Contents

Li	st of T	ables	vii
Li	st of F	igures	ix
1	A gu 1.1 1.2 1.3 1.4 1.5	ide to this manual Introduction Overview Manual version and revisions Typographical conventions Changes with respect to previous versions	1 1 2 2 3
2	Intro 2.1 2.2 2.3 2.4 2.5	duction to D-Waves SWAN wave model 2.1.1 Introduction 2.1.2 Conceptual design of SWAN: an introduction 2.1.3 Coupling of SWAN with D-Flow Flexible Mesh Areas of application Standard features Special features Utilities	5 5 5 5 6 6 6 6
3	Getti 3.1 3.2 3.3	Introduction	7 7 8 9 10 10
		3.3.1Project versus model3.3.2Load/save versus import/export3.3.3Working from the map3.3.4Coordinate conversion3.3.5Model area3.3.6Ribbons (hot keys)3.3.7Context menus (RightMouseClick)	11 11 12 13 13 13
4	Tuto 4.1 4.2 4.3 4.4	rial: setting up a simple D-Waves model Getting started	23
	4.0		- 24

	4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13	Process 4.7.1 4.7.2 Bounda Numeri Output Validati Simulat	ses Constant Physical ary Conditi cal Param Parameter on	s	. 26 . 26 . 27 . 27 . 29 . 30 . 31 . 31
5	All at	oout the	modellin	g process	35
	5.1 5.2 5.3 5.4	<i>MDW</i> fi Filenam	ile, attribut nes and co up a D-Wa	The files and file formats	. 35 . 36 . 37 . 37 . 37
			5.4.1.3	General Settings	
			5.4.1.4	Coordinate system	
			5.4.1.5	Simulation mode	
		5.4.2	Area		. 40
			5.4.2.1	Obstacles	. 41
			5.4.2.2	Observation Points	. 42
			5.4.2.3	Observation Curves	. 43
		5.4.3	Spectral I	Domain	. 43
			5.4.3.1	Directional space	. 43
			5.4.3.2	Frequency space	. 44
		5.4.4	Outer (do	omain)	. 44
			5.4.4.1	Import and export grids and bathymetries	. 45
			5.4.4.2	Create and/or edit grids in RGFGRID	. 46
			5.4.4.3	Create and/or edit bathymetries using the spatial editor	. 46
			5.4.4.4	Nest domains	. 46
		5.4.5		me	
			5.4.5.1	Time points	. 49
			5.4.5.2	Hydrodynamics	
			5.4.5.3	Wind	
		5.4.6		Conditions	
			5.4.6.1	Boundary location(s)	
			5.4.6.2	Forcing Type	
			5.4.6.3	Spatial definition	
			5.4.6.4	Activate support points	
			5.4.6.5	Spectrum settings	
			5.4.6.6	Edit conditions	
		517	5.4.6.7 Physical	Defaults and ranges	
		5.4.7		Processes	
			5.4.7.1 5.4.7.2	Constants	
			5.4.7.2 5.4.7.3	Breaking	
			5.4.7.3 5.4.7.4	General	
			5.4.7.4 5.4.7.5		
			5.4.7.5 5.4.7.6		
		5.4.8			. 60
		J.4.0	INUTHETICS	al Parameters	. 01

		5.4.9	Output Pa	arameters	62
6	Conc	eptual o	descriptio	n	65
	6.1	Introduo	ction		65
	6.2	Genera	l backgrou	ınd	65
		6.2.1	Units and	coordinate systems	65
		6.2.2	Choice of	grids and boundary conditions	66
		6.2.3		ids	
	6.3			und of SWAN	
	0.0	6.3.1	-	lance equation	
		6.3.2		ion through obstacles	
		6.3.3			
		6.3.4	Diffraction	uced set-up	
	~ 1				
	6.4				
		6.4.1		vind	
		6.4.2		on of wave energy	
		6.4.3		wave-wave interactions	
	6.5		cal implem	nentation	79
		6.5.1	Propagati	ion	80
Re	feren	ces			83
Α	Files	of D-Wa	aves		89
	A.1	MDW-fi	le		89
		A.1.1		description	
		A.1.2			
		A.1.3		emplate SWAN INPUT file	
	A.2)-Waves	
	/ \	A.2.1		on	
		A.2.2		al curvilinear grid	
		A.2.2		es for wave boundary conditions	
		A.2.3 A.2.4		file	
		A.2.4		file	
		A.2.5	-		
				$(1, \dots, n) = \{ (n \in \mathbb{N} \mid n \in \mathbb$	
		A.2.7		rying bottom friction (not implemented for D-Waves)	
		A.2.8			
			A.2.8.1	Time-varying and uniform wave conditions in <wavecon.<i>rid> file</wavecon.<i>	
			A.2.8.2	Time-varying and space-varying wave boundary conditions	102
			A.2.0.2	using BCW files	102
				Space-varying wave boudnary conditions using for UNIBEST	103
			A.2.8.3		
				coupling (<md-vwac>-file)</md-vwac>	110
			A.2.8.4	Time- and space-varying wave boundary conditions: TPAR file	111
		A.2.9	Spootral i	nput and output files	
		A.2.10		rying wind field	
				Space-varying wind on the computational (SWAN) grid	
				Space-varying wind on an equistant grid	
				Space-varying wind on a curvilinear grid	
			A.2.10.4	Space-varying wind on a Spiderweb grid	130
В	Defin	ition of	SWAN wa	ave variables	135
_	_				

C Example of MDW-file Siu-Lam

139

List of Tables

4.1	Table 2.1 Hydrodynamic conditions for exercise 1	26
4.2	Table 2.2 Processes for exercise 1	26
4.3	Table 2.3 Boundary conditions for exercise 1	29

List of Figures

3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	Start-up lay-out D-HYDRO Suite		8 9 10 10 10 12 12
	Start-up lay-out Delft3D Flexible Mesh Suite		 15 16 16 17 18 19 20 21 21 22 23 23 24 25
	support points (blue)		28
4.19 4.20 4.21 4.22	aryCondition01)	•	29 30 31 32
5.1 5.2	Overview of the <i>General</i> tab		37
5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14	rection of winds and (incident) waves		 38 39 40 40 41 43 45 45 46 47 47 48
5.15	Specification Hydrodynamics and Wind conditions		48

5.16	Adding time points using the table	49
5.17	Pasting time points from another series or program, for example Excel	49
5.18	Specification of constant hydrodynamics	50
5.19	Specification of hydrodynamics per time point	50
5.20	Specification of constant wind	51
5.21	Specification of wind per time point	51
5.22	Specification of wind (field) from file	51
5.23	Add a spiderweb wind field	
5.24	Select Add Wave Boundary from the Map / Waves Region 2D/3D ribbon	52
5.25	Draw the boundary line on the map	
	Boundaries are added to the Project window under <i>Boundaries</i>	
	Overview of the <i>Boundary conditions</i> editor	54
5.28	Activate a support point in the Boundary conditions editor and inspect the	
	location of the selected support point in the Geomtery view	
	Select spectrum shape and set corresponding properties	
5.30	Specify parameterized wave boundary conditions and inspect in graph	
5.31	Overview of the <i>Physical Processes</i>	
	Overview of Numerical Parameters	
5.33	Overview of Output parameters	62
6.1	Nautical convention (left panel) and Cartesian convention (right panel) for di-	
••••	rection of winds and (incident) waves	65
6.2	Definition of grids (input, computational and output grids) in Delft3D-WAVE	
6.3	Disturbed regions in the computational grid	
A.1	Definition wind components for space varying wind	
A.2	Definition sketch of wind direction according to Nautical convention	122
A.3	Illustration of the data to grid conversion for meteo input on a separate curvi-	
	linear grid	
A.4	Wind definition according to Nautical convention	
A.5	Spiderweb grid definition	132

1 A guide to this manual

1.1 Introduction

This User Manual concerns the module D-Waves.

This module is part of several Modelling suites, released by Deltares as Deltares Systems or Dutch Delta Systems. These modelling suites are build with use of the Delta Shell framework. The framework enables to develop a range of modeling suites, each distinguished by the components and — most significantly — the (numerical) modules, which are plugged in. The modules which are compliant with the Delta Shell framework are released as D-*Name of the module*, for example: D-Flow Flexible Mesh, D-Waves, D-Water Quality, D-Real Time Control and D-Rainfall Runoff.

Therefore, this User Manual is shipped with several modelling suites. On the *Start Page* links are provided to all relevant User Manuals (and Technical Reference Manuals) for that modelling suite. Other user manuals can be referenced. In that case, you need to open the specific user manual from the *Start Page* in the central window. Some texts are shared in different user manuals, in order to improve the readability.

1.2 Overview

This user manual gives a description on how to use the D-Waves module. The module can be part of a so-called *Integrated model* within Delft3D Flexible Mesh Suite or D-HYDRO Suite. In most cases it will be coupled with D-Flow Flexible Mesh. Read more about this coupling in Deltares (2024a). You can find it on the *Start Page*.

Generally, the following items with respect to the use of the D-Waves module will be described in this manual.

Chapter 2: Introduction to D-Waves provides information of the underlying calculation core SWAN, areas of application and its main features.

Chapter 3: Getting started introduces the D-Waves Graphical User Interface (GUI), used to define the input required for a wave simulation.

Furthermore, **Chapter 4: Tutorial: setting up a simple D-Waves model** guides you in creating your first D-Waves model(run).

Chapter 5: All about the modelling process provides practical information on the selection of all parameters and the tuning of the model.

Chapter 6: Conceptual description discusses the unit and co-ordinate system, the various grids, grid-numbering etc. In addition, a brief description is given on the physics and numerics that have been implemented in D-Waves.

References provides a list of publications and related material on the D-Waves module.

Appendix A: Files of D-Waves gives a description of all the attribute files that can be used in the D-Waves input. This information is required for generating certain attribute files either manually or by means of other utility programs. For other attribute files this description is just for your information.

Appendix B: Definition of SWAN wave variables the definition of the integral wave param-

eters is given.

Appendix C: Example of MDW-file Siu-Lam contains an example of a Master Definition file for the Wave <*.mdw> input file for the D-Waves module.

1.3 Manual version and revisions

This manual applies to:

- ♦ D-HYDRO Suite, version 2019
- ♦ Delft3D Flexible Mesh Suite, version 2019

1.4 Typographical conventions

Throughout this manual, the following conventions help you to distinguish between different elements of text.

Example	Description
Module Project	Title of a window or a sub-window are in given in bold . Sub-windows are displayed in the Module window and cannot be moved. Windows can be moved independently from the Mod- ule window, such as the Visualisation Area window.
Save	Item from a menu, title of a push button or the name of a user interface input field. Upon selecting this item (click or in some cases double click with the left mouse button on it) a related action will be executed; in most cases it will result in displaying some other (sub-)window. In case of an input field you are supposed to enter input data of the required format and in the required domain.
<\tutorial\wave\swan-curvi> <siu.mdw></siu.mdw>	Directory names, filenames, and path names are expressed between angle brackets, <>. For Linux environments a forward slash (/) is used instead of the backward slash (\) for Windows environments.
"27 08 1999"	Data to be typed by you into the input fields are dis- played between double quotes. Selections of menu items, option boxes etc. are de- scribed as such: for instance 'select <i>Save</i> and go to the next window'.
delft3d-menu	Commands to be typed by you are given in the font Courier New, 10 points.
	In this User manual, user actions are indicated with this arrow.

Example	Description
[m s ⁻¹] [–]	Units are given between square brackets when used next to the formulae. Leaving them out might result in misinterpretation. Most units will be in SI notation. [m AD] stands for 'meter Above Datum', which denotes a level relative to the vertical reference system in the model.

1.5 Changes with respect to previous versions

This edition is updated to the releases mentioned above: screencasts, menu items, lists etc. Most significant is the updated *Tutorial* in Chapter 4.

2 Introduction to D-Waves

2.1 SWAN wave model

2.1.1 Introduction

To simulate the evolution of random, short-crested wind-generated waves in estuaries, barrier islands with tidal inlets, tidal flats, lakes, channels etc., the D-Waves module can be used. D-Waves is based on the *third-generation* SWAN calculation core - SWAN is an acronym for Simulating **WA**ves **N**earshore (see e.g. Holthuijsen *et al.* (1993); Booij *et al.* (1999); Ris *et al.* (1999)).

SWAN was developed at Delft University of Technology (The Netherlands). It is specified as the standard for nearshore wave modelling and coastal protection studies. SWAN has been released under public domain. For more information about SWAN reference is made to the SWAN home page:

http://www.swan.tudelft.nl/

D-Waves computes wave propagation, wave generation by wind, non-linear wave-wave interactions and dissipation, for a given bottom topography, wind field, water level and current field in waters of deep, intermediate and finite depth.

2.1.2 Conceptual design of SWAN: an introduction

The SWAN model is based on the discrete spectral action balance equation and is fully spectral (in all directions and frequencies). The latter implies that short-crested random wave fields propagating simultaneously from widely different directions can be accommodated (e.g. a wind sea with super-imposed swell). SWAN computes the evolution of random, short-crested waves in coastal regions with deep, intermediate and shallow water and ambient currents. The SWAN model accounts for (refractive) propagation due to current and depth and represents the processes of wave generation by wind, dissipation due to whitecapping, bottom friction and depth-induced wave breaking and non-linear wave-wave interactions (both quadruplets and triads) explicitly with state-of-the-art formulations. Wave blocking by currents is also explicitly represented in the model.

To avoid excessive computing time and to achieve a robust model in practical applications, fully implicit propagation schemes have been applied. The SWAN model has successfully been validated and verified in several laboratory and (complex) field cases (see Ris *et al.* (1999); WL | Delft Hydraulics (1999, 2000)).

2.1.3 Coupling of SWAN with D-Flow Flexible Mesh

This is discussed in the D-Flow Flexible Mesh User Manual.

2.2 Areas of application

The D-Waves model can be used for coastal development and management related projects and for harbour and offshore installation design. It can also be used as a wave hindcast model. Typical areas for the application of the SWAN model may vary of up to more than 50 km \times 50 km. Generally, the model can be applied in the following areas:

- ♦ estuaries
- ♦ tidal inlets
- ♦ lakes
- ♦ barrier islands with tidal flats
- ♦ channels
- ♦ coastal regions

2.3 Standard features

The SWAN model accounts for the following physics:

- ♦ wave refraction over a bottom of variable depth and/or a spatially varying ambient current
- ♦ depth and current-induced shoaling
- ♦ wave generation by wind
- ♦ dissipation by whitecapping
- ♦ dissipation by depth-induced breaking
- ♦ dissipation due to bottom friction (three different formulations)
- onlinear wave-wave interactions (both quadruplets and triads)
- ♦ wave blocking by flow
- ♦ transmission through, blockage by or reflection against obstacles
- ♦ diffraction

Note: The diffraction approximation in SWAN does not properly handle diffraction in harbours or in front of reflecting obstacles. Behind breakwaters with a down-wave beach, the SWAN results seem reasonable. Use diffraction with care!

2.4 Special features

A special feature is the dynamic interaction with D-Flow Flexible Mesh (i.e. two way wavecurrent interaction). By this the effect of waves on current (via forcing, enhanced turbulence and enhanced bed shear stress) and the effect of flow on waves (via set-up, current refraction and enhanced bottom friction) are accounted for.

2.5 Utilities

In using D-Waves, the following utilities are important:

module	description
RGFGRID	for generating grids
QUICKPLOT	for visualising simulation results

For details on using these utility programs you are referred to the respective User Manuals.

3 Getting started

3.1 Introduction

The D-Waves module is compatible with Delft3D Flexible Mesh Suite or D-HYDRO Suite. For an introduction to the general look-and-feel and functionalities of the Delft3D Flexible Mesh Suite or D-HYDRO Suite you are referred to Deltares (2024c). This Chapter gives an overview of the basic features of the D-Waves module. For a detailed description of the GUI features you are referred to chapter chapter 5, All about the modelling process.

3.2 Overview of the D-Waves plug-in

The Delft3D Flexible Mesh Suite or D-HYDRO Suite is only available for Windows operating systems. You need to install the msi-version. Consequently, open for example D-HYDRO Suite by double-clicking the D-HYDRO Suite icon in *Start /All Programs / Deltares* or the short-cut on your desktop.

When you open D-HYDRO Suite for the first time the lay-out will look like Figure 3.1. The basic lay-out consists of the following items:

- ◇ Project window upper left
- ♦ Properties window lower left
- ♦ central (Map) window upper centre
- ♦ Time Navigator window / tab lower centre
- ♦ Messages window / tab lower centre
- ♦ Toolbox window /tab right
- ♦ Operations window /tab right
- ♦ Map window / tab rightt
- ♦ Region window /tab right
- ♦ Chart window /tab right

3 1a 🖆 🗎 Ŧ		Project1 - Delft3D FM Suite 2019.04 HMWQ (1.5.4.45038)	- ¤ ×
File Home View Tools Image: Construction of the state of the sta	Vig Run All Sore Find Green Green		
Project • B ×			Mee * 9 X 슈퍼(소송)
Properties • 0 × Project • 0 × Project • 0 × • 0			
Application name Delft3D FM Suite 2019.0 Task count 0 Size 0	Messages Image spatial screen Image spatial screen Image screen scree	* # X 2019-09-011015538 2019-09-011015538 2019-09-011015538 2019-09-01101558 2019-09-01101558 2019-09-01101558 2019-09-011101558 2019-09-011101558 2019-09-011101558 2019-09-01101558	Otar Region Map Operators Tooltox

Figure 3.1: Start-up lay-out D-HYDRO Suite

All the windows can be customized/hidden according to your own preferences. Please, read Deltares (2024c) to read how you can do this. You will find this manual on the *Start Page*. The

settings will be automatically saved for the next time you open D-HYDRO Suite.

The most important windows for the D-Waves module are the **Project** window, the central (Map) window, the **Map** window, the **Messages** window and the **Time Navigator** window. The contents of these windows are briefly discussed in the subsections below.

3.2.1 Project window

After adding or importing a D-Waves model the **Project** window will be extended with D-Waves model specific features (see Figure 3.2).

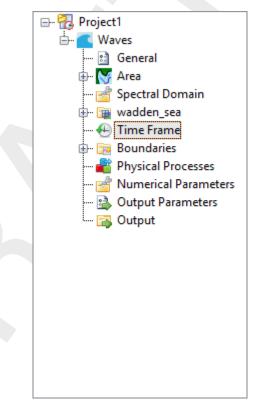


Figure 3.2: Project window of D-Waves module

The **Project** window provides you with the basic steps to set up a D-Waves model. It consists of the following features:

General	general model information such as description, model coordinate system, simulation mode, directional convention, etc.
Area	geographical (GIS based) features, such as observation points and curves and obstacles
Spectral Domain	spectral settings
Domain (outer)	model grid and bathymetry (multiple in case of nested model)
Time Frame	time points (and time-varying) hydrodynamic and wind conditions
Physical Parameters	physical settings for processes such as setup, wave breaking, refrac- tion, triads, etc.
Boundaries	wave boundary conditions and spectrum specification
Numerical Parameters	numerical simulation settings
Output Parameters	output specification
Output	output after running the simulation

Upon clicking the items in the **Project** window the corresponding tab (in case of GIS/mapindependent model settings), attribute table (in case of GIS/map-dependent model settings) or editor view (in case of advanced editing options) will open in the central window. Using the right mouse click (*RMClick*) gives options such as importing/exporting model data.

3.2.2 Central (Map) window

The central window shows the contents of the main editor you are working with. In most cases this will be the central map or an editor with tabulated input fields (see Figure 3.3). The map is used to edit GIS dependent model data, the tabulated input fields to edit overall model settings. Moreover, the contents of the central window can also be a specific editor such as the time point editor or the boundary condition editor. Each of these editors will open as a separate view (tab).

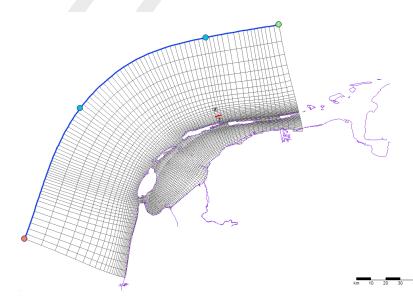


Figure 3.3: Central map with contents of the D-Waves plug-in

3.2.3 Map window

The **Map** window allows the user to control the visibility of the contents of the central map using checkboxes. Furthermore, the user can add *wms* layers, such as satellite imagery (see Figure 3.4).

Note: : Please note that the map usually has a different coordinate system than the model. In rendering the model attributes they are transformed to the map coordinate system (for visual inspection on the map), but the model will be saved in the model coordinate system.

	Į	★	ļ
--	---	---	---

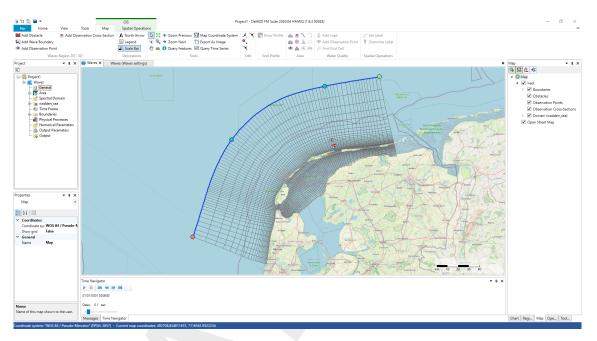


Figure 3.4: Map window controlling the contents in the (central) map

3.2.4 Messages window

The **Messages** window (Figure 3.5) provides a log of information on the recent activities in D-HYDRO Suite. It also provides warning and error messages.

Mes	ssage	25	- 4	×
0	0	Start importing data	10/3/2018 1:46:38 PM	
	1	Error during rendering : Sequence contains no elements	10/3/2018 1:45:52 PM	
0	8	Hardware (OpenGL) rendering of layer 'Bathymetry (wadden_sea)' failed, falling back to software rendering: Sequence contains no elements	10/3/2018 1:45:52 PM	
÷	0	Loaded project D:\DWaves\project\project1.dsproj	10/3/2018 1:44:14 PM	
~	<u>ا</u>	Grid is set in project but doesn't contain a coordinate system. The model has co-ordinate system Amersfoort / RD New, setting grid to this co-oord	10/3/2018 1:44:14 PM	-

Figure 3.5: Log of informative messages, warnings and errors in the Messages window

Note: that, after a simulation run, the SWAN run log file will be present in the Output folder.

3.2.5 Time Navigator window

The *Time Navigator* (Figure 3.6) can be used to step through time dependent model output and other time dependent GIS features on the map.

• џ ×

Figure 3.6: Time navigator in D-HYDRO Suite

3.3 Important differences and new features compared to the former GUI (Delft3D-WAVE)

The differences between the former Delft3D-WAVE GUI and the D-Waves module in for example D-HYDRO Suite in lay-out and functionality are numerous. Here, we address only the most important differences in the workflow.

3.3.1 Project versus model

The entity *project* is new in the Delft3D Flexible Mesh Suite or D-HYDRO Suite. In the hierarchy the entity *project* is on a higher level than the entity *model*. A project can contain multiple models, which can either run standalone or coupled (exchanging data at every timestep). The user can run all models in the project at once (on project level) or each model separately (on model level). When the user saves the project, the project settings will be saved in a <*.dsproj> file and the *project data* in a <*.dsproj_data> folder. The <*.dsproj_data> folder contains folders with all input and output files for the models within the project. There is no model intelligence in the <*.dsproj> file, meaning that the models can also be run outside the GUI. D-Waves User Interface provides a function (*Export DIMR configuration*) to export the model files.

3.3.2 Load/save versus import/export

The user can load an existing Delft3D Flexible Mesh Suite or D-HYDRO Suite project, make changes in the GUI and, consequently, save all the project data. Loading and saving means working on the original project data, i.e. the changes made by the user overwrite the original project data. Alternatively, use *Save as* to keep the original project data and save the changed project data at another location (or with another name).

Import/export functionality can be used to copy data from another location into the project (*Import*) or, vice versa, to copy data from the project to another location (*Export*). Import/export is literally copying, e.g.:

- import: changes on the imported data will only affect the data in the project and not the source data (upon saving the project)
- export: the model data is copied to another location "as is", changes made afterwards will only affect the data in the project not the exported data (upon saving the project)

3.3.3 Working from the map

One of the most important differences with the former GUI is the central map. The central map is comparable with the former **Visualization area**, but with much more functionality and flexibility. The map helps you to see what you're doing and inspect the model at all times. You can use the *Region* and *Map* ribbons to add/edit model features in the map.

3.3.4 Coordinate conversion

With the map as a central feature, functionality to convert model and map coordinates is an indispensable feature. In the *General* tab you can set the model coordinate system. In the **Map** window you can set the map coordinate system using the RMClick (Figure 3.7). The coordinate systems are subdivided in geographic and projected systems. Use the quick search bar to find the coordinate system you need either by name or EPSG code (Figure 3.8).

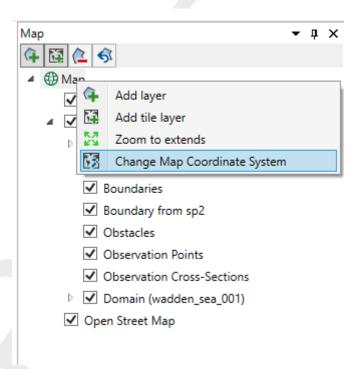


Figure 3.7: Set map coordinate system using RMClick

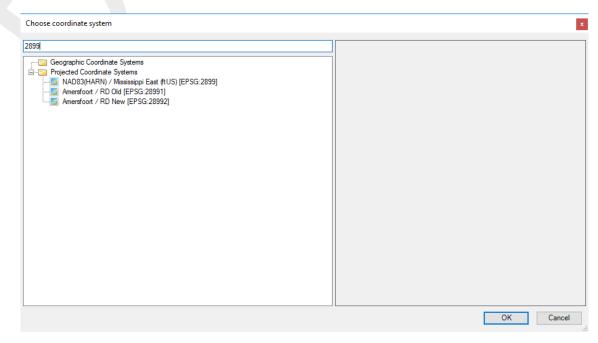


Figure 3.8: Select a coordinate system using the quick search bar

3.3.5 Model area

The model area contains geographical (GIS based) features, such as observation points & curves and obstacles. In contrast to the former GUI, these features can even exist without a grid or outside the grid and they are not based on grid coordinates, implying that their location remains the same when the grid is changed (for example by (de-)refining).

Finally, for the computations, the SWAN computational core interpolates the features to the grid. In the future we would like to show to which grid points the features are snapped before running the computation. However, this requires some updates in the SWAN computational core.

3.3.6 Ribbons (hot keys)

Delft3D Flexible Mesh Suite and D-HYDRO Suite make use of ribbons, just like Microsoft Office. You can use these ribbons for most of the operations. With the ribbons comes hot key functionality, providing shortcuts to perform operations. If you press the *ALT* key, you will see the letters and numbers to access the ribbons and the ribbon contents (i.e. operations). For example, ALT + H keys will lead you to the *Home* ribbon (Figure 3.9).

Note: : Implementation of the hot key functionality is still work in progress.

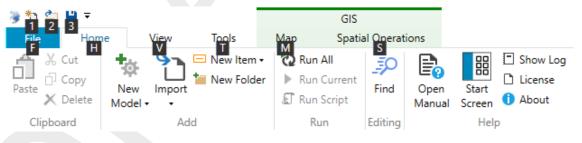


Figure 3.9: Perform operations using the hot keys

3.3.7 Context menus (RightMouseClick)

Context menus are the menus that pop up using the Right Mouse Click (*RMClick*). These context menus provide you with some handy functionality and shortcuts specific for the selected item. The functionality is available in all Delft3D Flexible Mesh Suite or D-HYDRO Suite windows and context dependent. You can best try it yourself to explore the possibilities.

4 Tutorial: setting up a simple D-Waves model

This tutorial is meant to get familiar with the GUI of D-Waves in Delft3D Flexible Mesh Suite or D-HYDRO Suite. As both model suites are based on the framework, we will refer to the model suites as Delft3D Flexible Mesh Suite.

For this specific case we use a model that covers the northern part of the Netherlands, called the Wadden Sea.

4.1 Getting started

Start Delft3D Flexible Mesh Suite. When you open the suite for the first time the lay-out will look like as in Figure 4.1.

				_
🦉 🔁 🔛 Ŧ	Project1 - DefR3D FM Suite 2019.04 HMWQ (1.5.4.45038)		-	
File Home View Took				۵
	tem V Run All JP Eshow Log			
X Delete Model	E Run Script Manual Screen I About			
Clipboard Add	Run Editing Help			
Project • 0	×		Map	• 0 ×
90			4 12 (2 4)	
Project1				
Properties • 0				
Project				
21 💷				
✓ General				
Name Project1				
Description				
Y Project				
Created				
Changed				
Application version 1.5.4.45038				
Application name Delft3D FM Suite 20 Teck count 0		* ‡ ×		
Task count 0 Size 0		2019-09-06 11:03:15:558 🔺		
3426	Started in 6.23 sec	2019-09-06 11:03:15:558		
		2019-09-06 11:03:15:508		
	Waiting until new project is initialized Menus and toolbars are ready.	2019-09-06 11:03:15:439 2019-09-06 11:03:15:439		
		2019-09-06 11:03:15:439		
		2019-09-06 11:03:15:408		
		2019-09-06 11:03:15:308		
Name		2019-09-06 11:03:15:308		
Name of the project shown to the user.		2019-09-06 11:03:15:225 💌		
	Messages Time Navigator		Chart Region Map Operations Toolbox	

Figure 4.1: Start-up lay-out Delft3D Flexible Mesh Suite

The **Start** page will open with a default project (i.e. *project1*). Save the project in your working directory using the *File* ribbon and the *Save as* command (see Figure 4.2).

¢	Info		
		Product name	Delft3D FM Suite 2019.04 HMWQ
New		Version	1.5.4.45038
		Copyright	© Deltares 2018
		Email	delft3d.support@deltares.nl
		Telephone	+31 (0)88 335 8100
Save As	Application plugins		
	.s.t. Delta Shell Cor	nmon Tools Plugi	in
Options	Delta Shell Pro	ion views and data	a. ata access to the Delta Shell project files

Figure 4.2: File ribbon: Save As

To add a D-Waves model to the project, the following options are available:

- 1 click *New Model* in the *Home* ribbon (Figure 4.3)
- 2 use the Right Mouse Click (RMClick) on project1 in the Project window, go to Add and select New Model ... (Figure 4.4)

🦻 🖒 🍟	💾 🔻				
File	Hon	ne	View	Tools	
Paste	Cut Copy Delete	New Model	Import	 New Item • New Folder 	 Run All Run Current Run Script
Clipbe		Model	Ad	ld	Run

Figure 4.3: Adding a new model: using the ribbon

祝 Proje					
•	Add		•		New Item
	lmport		Ļ	8	New Model
	Export			6	New Folder
X	6 Cut	Ctrl + X			
	Сору	Ctrl + C			
1	Paste	Ctrl + V			
1	Rename				
	Run All Mo	dels			
	Stop All Mo	dels			
1	Clear All Mo	odels Output			
4	Expand All .				
3	Collapse Al	l			
	Properties				
operties		- 7	х		
Project			•		
2↓ 🖾					
General					

Figure 4.4: Adding a new model: using the Right Mouse Click on project1

The following window will appear.

Select model		×
Select model Type: 1D / 2D / 3D Integrated Models - 2D-3D Integrated Model 1D / 2D / 3D Standalone Models Row Rexible Mesh Model	Sempty Integrated Model Water Quality Model Waves Model	
	OK Cancel	

Figure 4.5: Select Waves model

Select Waves model. By default the D-Waves model is called Waves in the Project window.

Use the Right Mouse Button on *Waves* in the **Project** window, **select** *Rename* and **rename** the model.

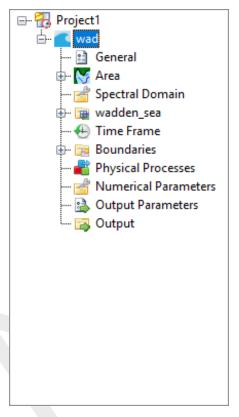


Figure 4.6: Project window with a D-Waves model, renamed to "wad"

After adding a D-Waves model, the **Project** window will be extended with D-Waves model specific features. The **Project** window provides you with the basic steps to set up a D-Waves model, see Figure 4.6.

Save all your data by going to the *File* ribbon and select *Save*.

You will see that you created a master definition file with the extension $<^*.mdw>$ in your working directory. In the following paragraphs, all features of the **Project** window will be discussed and input for a D-Waves model will be defined.

4.2 General

Double click on *General* in the **Project** window and a *General* tab will open. In the *General* tab (Figure 4.7) you can set the basic settings of your model.

wad (Waves settings) >						
General Spectral Domain Physical	Processes Numerical Parameters Output	Domain specific settings				
General Settings Project name Project number		 Communication Communication file Write communication files Communication interval 		60 [min]	 Simulation mode Simulation mode D-Waves time step 	stationary v 10 [min]
Reference date Directional convention	2013-03-19 🔷 🗸	Append to com file Mass flux to com	y	oo [min]	D-Waves time interval Verify input	60 [min]
 Default domain data 		 Online-coupling time frame 			\odot	
ed level	none ~	Coupled to D-Flow FM			Coordinate system	Amersfoort / RD New
Vater level	none v	Coupling start time	2013-03-19 00:00:00	×		
elocity	none ~	Coupling stop time		~		
/elocity type	depth-averaged ~	Coupling time step	0d00:00:00.000			
Wind	none ~					
Boundaries Jse SWAN domain boundary from ile ipectrum File:						

Figure 4.7: Overview of the General tab

4.2.1 General Settings

You can specify a project name and a project number. The name of the project may not be longer than 16 characters and the project number may not be longer than 4 characters. You may also decide to leave these lines empty.

The reference date is the date relative to which the time points are defined. For accuracy reasons **choose** the reference date not too far away from your time points.

The nautical convention for wind and wave direction will be adopted in this tutorial.

4.2.2 Default domain data

In this section, we can make the coupling with the D-Flow Flexible Mesh module. However this is not needed for this exercise. The hydrodynamic conditions in this exercise will be defined in the data group *Time Frame*.

4.2.3 Coordinate system

By clicking the earth icon, you can select the coordinate reference system (CRS) for your model.

Use the quick search bar to find your CRS either by name or EPSG code. The list of CRS that you can select is limited to those that are supported by SWAN (the computational core of D-Waves), i.e. only the WGS84 geographic CRS and most projected CRS.

Choose Amersfoort / RD New [EPSG:28992].

4.2.4 Online-coupling time frame

In this section, we can specify a coupling time frame for coupling with the D-Flow FM module. This is not needed for this exercise.

4.2.5 Simulation mode

Specify *stationary* mode in the *Simulation mode* section. The stationary mode is considered to be justified when the residence time (time required for the waves to travel trough the domain) of the simulated waves is relative small compared to the boundary conditions and forcing (e.g. wind and currents).

4.3 Outer (domain)

A grid and a bathymetry can be imported for every domain that has been specified in the **Project** window. In the **Project** window, when a new D-Waves model is set up, only one domain is already defined: the *Outer* domain, see Figure 3.2. This domain contains a *Grid* and a *Bed Level* specification.

Import an existing grid (in this case <wadden_sea.grd>) using the **RMClick** on *Grid* under <domainname>. Likewise, **import** an existing bathymetry (in this case <wadden_sea.dep>).

The imported grid/bathymetry (which is called *Outer* initially) can be viewed and inspected in the central map (see Figure 4.8).

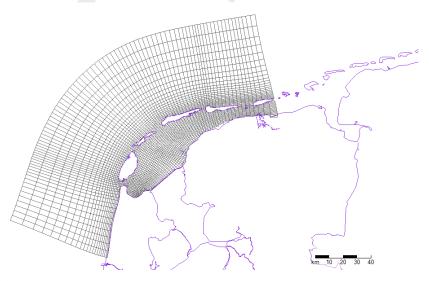
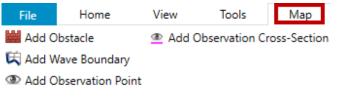


Figure 4.8: Wadden_sea grid

The Map window allows the user to add a landboundary file.

Click Add New Layer to select the landboundary file <holland.ldb> (see Figure 4.9).

Мар 🝷 д 🗙
4 🛱 🙋 🥱
🔺 🌐 Map
▲ 🖌 wad
Boundaries
✓ Obstacles
Observation Points
Observation Cross-Sections
 Domain (wadden_sea)
Grid (wadden_sea)
Bathymetry (wadden_sea)
✓ Open Street Map
Figure 4.9: The Map window


Note that to generate a grid from scratch or edit an imported grid, double click on *Grid* under <domainname> in the **Project** window and RGFGRID will open.

In D-Waves you can also specify several grids in one run; you have to point out which grid is nested in which grid. The idea of nesting is to have a coarse grid for a large area and one or more finer grids for smaller areas. The coarse grid computation is executed first and the finer grid computations use these results to determine their boundary conditions. Nesting can be repeated on ever decreasing scales.

Before starting with modelling, **inspect** your grid and bathymetry.

4.4 Area

The model area contains geographical (GIS based) features, such as observation points & curves and obstacles. These features can be added using the *Map / Waves Region 2D/3D* ribbon, see Figure 4.10. If you would like to change the locations of the features use the *Edit* ribbon, see Figure 4.11. By selecting a feature from the map and double clicking it, the attribute table will open with feature specific properties.

Waves Region 2D / 3D

Figure 4.10: Adding geographical features using the Map ribbon

Figure 4.11: Adjusting (the location of) geographical features using the Edit ribbon

All the features defined in Area can exist without a grid and they are not based on grid coordinates, implying that their location remains the same when the grid is changed (for example by (de-)refining).

4.4.1 Obstacles

Within the Data Group Obstacles you can specify the characteristics of (a line of) sub-grid obstacles. The location of the obstacle is defined by a sequence of corner points of a line. The obstacles interrupt the propagation of the waves from one grid point to the next wherever this obstacle line is located between two neighbouring grid points of the computational grid (the resolution of transmission or blockage is therefore equal to the computational grid spacing).

Note: this is different from D-Flow FM, where you have to specify blockage by means of *Thin dams* and *Dry points*. When you are going to couple, keep in mind that you have to specify this blockage of flow/wave-energy both in D-Flow FM and D-Waves separately.

- 1 Double click on the Data Group Obstacles in the Project window under Area.
- 2 Click on Add Obstacle in the Map / Waves Region 2D/3D ribbon.
- 3 Click on the map to define an obstacle with roughly the following coordinates:

```
3.1 start: x: "162000" y: "611000"
3.2 end : x: "166000" y: "612500"
```

- 4 **Double click** on the map to end the obstacle definition. The obstacle will appear in a table in the Obstacles tab, see Figure 4.12.
- 5 Double click on Dam to specify that the transmission coefficient depends on the incident wave conditions as type of the obstacle and on the obstacle height (which may be sub-merged). Select for the Height of the dam (with respect to the reference level) a value of "0.0" [m] and for the coefficients Alpha and Beta respectively a value of "2.6" and "0.15". Furthermore, select the Reflection Type (*no*).
- 6 **Save** the project by using use the disk-icon on the Quick Access Toolbar or the *File* ribbon. Two independent files have been generated: <*.obt>, where the obstacle information is kept, such as alpha, beta, reflection, etc and a <*.pol> file, where the location information is stored.

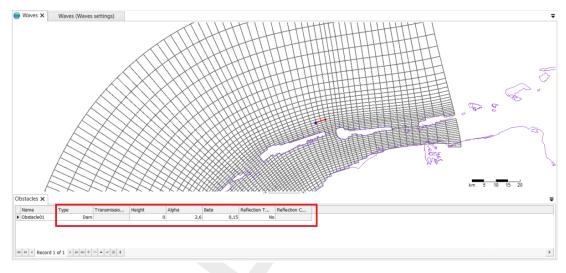


Figure 4.12: Data group Obstacles

4.4.2 Observation Points

With Observation Points you can specify (monitoring) locations at which wave output should be generated by D-Waves. You can add Observation Points with the *Add Observation Point* button in *Map / Waves Region 2D/3D* ribbon. Similarly, in the *Edit* section you can edit and delete these points using the ribbons.

- 1 **Double click** on the Data Group Observation Points in the **Project** window under Area.
- 2 Click on 'Add Observation Point' in the Map / Waves Region 2D/3D ribbon.
- 3 Click on the map to define two observation points with roughly the following coordinates:
 - 3.1 x:162000 y:616000
 - 3.2 x:165000 y:609000
- 4 The observation points will appear in a table in the Observation Points tab, see Figure 4.13.
- 5 Save the project by using use the disk-icon on the Quick Access Toolbar or the *File* ribbon.
- 6 A file has been generated: <*.loc>, where the location information is stored.

		• · · · · · · · · · · · · • · · · · ·	
Obstacles	Observation Points	x	₹
Show only r	map selection		
Name X	Y		
	006,471486 616049,44		
point1 1649	992,352615 609063,6	99055	
HI HI H Record	d 1 of 2 ▶ ₩ ₩ + -		Þ

Figure 4.13: Data group: Observation points

4.4.3 Observation curves

Within the Data Group Area in the **Project** window you can specify an observation curve at which wave output will be generated by D-Waves. The curve is piecewise linear.

In this tutorial no observation curve will be defined.

4.5 Spectral Domain

In addition to the computational grids in geographical space, SWAN also calculates wave propagation in the spectral space (see the SWAN documentation). To that end, for each geographical grid the spectral grid has to be specified using the Spectral resolution tab.

Click on the data group *Spectral Domain* in the **Project** window to edit the spectral grid, see Figure 4.14.

🔵 Waves							
General	Spectral Domain	Physical Proc	esses Numerical Par	rameters C	Output		
O Defaults							
Direction	Directional space v						
Nr. of dir	Nr. of directions 36						
Start dire	ction			0	[deg]		
End direc	tion			360	[deg		
Nr. of fre	quencies			24			
Min. freq	uency	0.03		ncy 0.03 [Hz			[Hz]
Max. free	Max. frequency		[Hz]				

Figure 4.14: Data group: Spectral Domain

You can define the range and the resolution in directional space for SWAN.

In the present example **Select** / **use** the *circle* option for the directional space (this means the full circle of 360° is taken into account). **Edit** *Number of directions* to specify the number of spectral directions: "36" ($\Delta \theta = 360^{\circ}/36$).

You can also define the range and resolution in frequency space. The Number of frequency bins are the number of meshes in the frequency space. This defines the grid resolution in frequency space between the Lowest frequency and the Highest frequency. This resolution is not constant since the frequencies are distributed logarithmic.

For the current computation you can leave the values as default:

- 1 Numbers of frequency bins: "24"
- 2 Minimum frequency: "0.03" [Hz]
- 3 Maximum frequency: "1" [Hz]

Remarks:

- 1 If you want to consider only wave directions in a limited directional sector, the option Sector may be chosen. The range in degrees of this directional sector is specified giving the Start direction and the End direction.
- 2 SWAN has the option to perform computations on a nested grid. In such cases, the spectral resolution of the nested grid in SWAN does not need to be equal to the spectral grid of the coarse grid. However, in D-Waves it is not yet possible to specify different spectral domains for the different domains.

4.6 Time Frame

In the Time frame tab in the **Project** window you can specify the time points on which wave computations have to be carried out, hydrodynamic conditions (water level and currents) and wind conditions, see Figure 4.15.

Hydrodynamics:	Per Tim	epoint ~	Wind:	Constant	~		
🔁 Clipboard import	🖲 Csv i	import 🙉 Csv exp	oort			-Wind (constant values)-	
Time [-]		Water Level [m]	Velocity X [m/s]	Velocity Y [m/s]		Speed:	10
2019/09/06 00:00:00	+	-1	0	0			
2019/09/07 00:00:00		0		0		Direction:	315
2019/09/08 00:00:00		1.5	0	0		Direction	
*							
H4 44 4 Record 1 of 3	+ ++ +	H + - ▲ ✓ ×	4)		
Export to be	oundaries		Import from bo	undary			

Figure 4.15: The Time Point Editor

There are three options:

- ♦ you want to perform a standalone wave computation
- ♦ you want to perform an offline coupling with D-Flow FM
- ♦ you want to perform an online coupling with D-Flow FM

In the latter two cases, you specified a D-Flow FM computation in the tab General. Time steps must be specified for a standalone wave computation. For a coupled flow-wave (online or offline) computation the time steps (and corresponding hydrodynamics and wind) are usually copied from the flow computation.

In the Time Point Editor you can specify the wind conditions, see Figure 4.15. You can specify a constant wind, a time varying wind or a space and time varying wind. The last type, you have to specify by means of meteofiles (<*.amu>, <*.amv>, <*.amp>).

In this tutorial we will specify time points and define the water level, velocity and wind.

- 1 **Double click** on Time frame to enter the Data Group.
- 2 We will use time varying hydrodynamics. **Select** Hydrodynamics: 'Per Timepoint'. It is also possible to select hydrodynamics constant in time.
- 3 We will use a constant wind field (wind speed and direction). **Select** Wind: *Constant*. It is also possible to specify time varying and/or in space varying wind, by selecting wind 'Per time point' or wind 'From file'.
- 4 In the time point editor add time points according to Table 2.1 (3 consecutive days). **Select** your Time points close to the reference date that you selected in Data Group General.
- 5 The wind direction applied is the same direction as the incident wave direction at the wave boundary. The following conditions need to be specified:
 - 5.1 Speed: "10" $[m s^{-1}]$.

	Water Level [m]	Velocity X [m/s]	Velocity [m/s]
Time point day 1	-1.0	0	0
Time point day 2	0.0	0	0
Time point day 3	1.5	0	0

Table 4.1: Table 2.1 Hydrodynamic conditions for exercise 1

5.2 Direction: "315" [degrees] (conform the convention activated in *General Settings*: Nautical)

4.7 Processes

In this data group you can select which physical processes SWAN will use (i.e. type of formulation, dissipation processes, non-linear wave-wave interactions, diffraction).

Click the tab Physical Processes in the **Project** window (see Figure 4.16) to edit the select the relevant processes. Table 2.2 gives an overview of the settings that will be used for this exercise.

4.7.1 Constants

In this sub-data group you can assign values to some general parameters (Figure 4.16)

In this tutorial no Water level correction is applied (0 m). Furthermore, the standard values for the gravitational acceleration Gravity, the Water density, the direction of North with respect to the x-axis and the threshold depth [m] minimum water depth will be used.

Select third generation mode. This means that SWAN will use third-generation formulations for the representation of the deep water physical processes.

Select dissipation as wave force computation. This means that the Forces will be based on the wave energy dissipation rate.

Process	On /off /formulation
Wave setup	Off
Depth induced breaking	On
Triads	Off
Bed friction	Jonswap
Diffraction	Off
Wind growth	On
Quadruplets	On
Whitecapping formulation	Komen
Refraction	On
Frequency shifting	On

Table 4.2:	Table 2.2	Processes	for e	exercise	1

4.7.2 Physical Processes

In the *Physical processes* tab it is also possible to specify the settings of two processes:

- 1 Depth-induced breaking: for this tutorial the default values are used (Alfa = 1.0 and Gamma = 0.73).
- 2 Bottom friction: In the 'Processes' tab the JONSWAP bottom friction formulation was selected. Use the default JONSWAP bottom coefficient of 0.038 m^2/s^3

Waves Waves (Waves settin			
General Spectral Domain Physical	Processes Numerical Parameters Output		
Constants		General	
Water level correction	0 [m]	Physics mode	third generation ~
Gravitational acceleration	9.81 [m/s2]	Wave setup	
Water density	1025 [kg/m3]	Wind growth	\checkmark
North direction w.r.t. x-axis	90 [deg]	Quadruplets	\checkmark
Minimum water depth	0.05 [m]	White capping formulation	Komen v
		Refraction	✓
		Frequency shifting	\checkmark
		Wave force computation	dissipation *
Breaking		Triads	
Depth induced breaking	\checkmark	Triads	
Alpha	1 [-]		
Gamma	0.73 [-]		
Bed friction		Diffraction	
Bed friction	JONSWAP	Diffraction	
Bed friction coef.	0.038		

Figure 4.16: Data group: Physical Processes

4.8 Boundary Conditions

The incident wave conditions at the boundary of the first computational grid are defined under the data group *Boundaries* in the **Project** window. All other computational grids (i.e. the nested grids) obtain their boundary information from other grids.

In the D-Waves computations, wave boundary conditions may be specified at different sides.

For the Wadden Sea model, the boundary is located along the west/north-west side of the computational grid. The wave conditions can vary along this boundary section. For this reason we are going to prescribe a space-varying boundary condition.

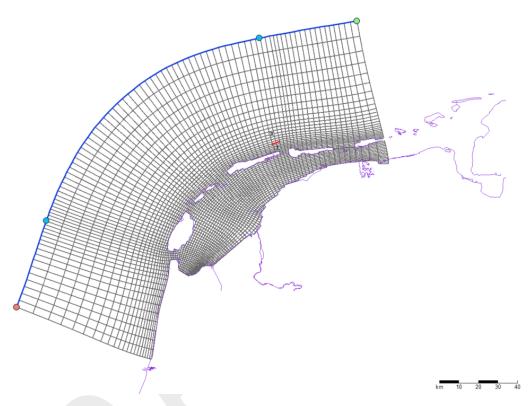


Figure 4.17: Boundary conditions along the west/north-western side of the grid, defined by support points (blue)

- 1 Click on 'Add Wave Boundary' in the Map / Waves Region 2D/3D ribbon (see Figure 4.10).
- 2 **Draw** a line for boundary conditions in the central map, see Figure 4.17, where the green circle is the start of the boundary, the red circle highlights the end of the boundary:
 - 2.1 the first support point at the north-eastern corner point of the model
 - 2.2 the end point in the north-western corner point of the model

A Data Group Boundary01 will appear in the Project window under Boundaries.

- 1 **Double click** on the Data Group 'Boundary01' in the **Project** window under Boundary Conditions. The Boundary Condition Tab will appear, see Figure 4.18.
- 2 In de Boundary Editor Tab under 'Forcing Type', **select** for this exercise a forcing Parameterized (Constant). Other options include Parameterized (Timeseries) or Spectrum based (from file). In the present tutorial the peak period and the directional spreading expressed in cosine power are considered as input integral waves parameters. Furthermore, a JON-SWAP type spectrum will be used with the peak enhancement factor set to the default value of "3.3".
- 3 In de Boundary Editor Tab under 'Spatial Definition', **set** the conditions along the wave boundary to Spatially Varying to indicate that the wave conditions vary along the up-wave boundary (see Figure 4.18).
- 4 In the Support points window fill a distance "50.000" [m] and press Enter (or green button) to add the spatial point.
- 5 Please repeat the previous step and add another, third point at "200.000" [m]
- 6 Activate the support points that you want to put conditions on by **clicking** on the checkbox, on the right from the added support point (see Figure 4.18). In this case we would like to define wave conditions on the 2^{nd} and 3^{rd} support point, see Table 2.3.

	2^{nd} point	3 rd point
Distance from corner point [m]	50000	200.0000
Significant wave height [m]	2.0	4.0
Peak period Tp [s]	5.0	5.0
Direction (nautical) [°N]	315	315
Directional spreading (power) [-]	4	4

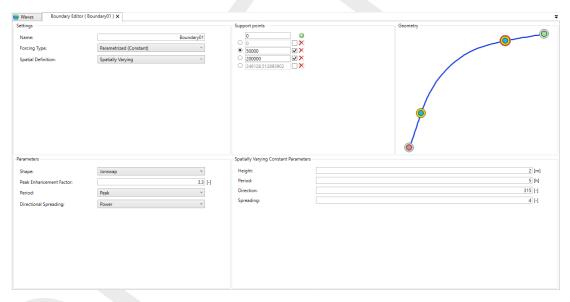


Figure 4.18: Data group: Boundary Condition definition of one boundary section (BoundaryCondition01)

4.9 Numerical Parameters

In the Data Group Numerical parameters you can modify parameters that affect the stability and accuracy of the numerical computation, see Figure 4.19.

🔵 Waves	Waves (V	/aves settings) 🗙	Time Point Editor (Wave	is)	Boundary Condition (BoundaryCondition01)
General	Spectral Domain	Physical Process	es Numerical Parameters	Output	
Nur	nerical Parameters				
Directio	nal discretisation		C	.5 [-]	
Frequer	cy discretisation		C	.5 [-]	
RChHsT	m01		0.0	02	
RChMei	anHs		0.0)2 [m]	
RChMe	inTm01		0.0	02	
Converg	ence percentage		9	98 [%]	
Max. nr.	of iterations		•	15	

Figure 4.19: Data group Numerical Parameters

In the Numerical parameters tab you can control the amount of diffusion of the implicit scheme in the directional space through the parameter for the Directional Discretisation (CDD) and frequency space through the parameter for the Frequency Discretisation (CSS). The default values of CDD = "0.5" and CSS = "0.5" will be used here.

You can influence the accuracy criteria for terminating the iterative procedure in the SWAN computations (see the SWAN documentation for the convergence criteria). This might be interesting, when the accuracy criterion is not met due to convergence problems in a remote area. Here the default values are used for the relative change, the relative change with respect to the mean value and the percentage of wet grid points.

You can also specify the Maximum number of iterations at which the computation stops. We recommend to use the accuracy criteria and specify your maximum number of iterations at "40". In this tutorial **change** the number of iterations into "15" iterations to cut in computational time. However, it should be noted that the wave result will be less accurate, as the results might not be converged in some areas.

4.10 Output Parameters

Output of several relevant parameters can be written to the computational grid. How often the output is written can be determined with the Map file interval, see Figure 4.20.

All wave information is stored on the wavm.*runid*.dat file. Next to that, the spectral information can be stored in <*.sp1> and <*.sp2> files and the table data is stored on the <*.tab> file.

Tick these boxes for this exercise, see Figure 4.20.

The option *Write/read hotstart* can be used to write the entire wave field at the end of a computation to an initialisation file. The hotstart file can be used in a subsequent SWAN run as initial condition. In many cases with a series of wave runs, this option can save significantly amount of computational time. However, in this tutorial the option 'Write/read hotstart' is **not** selected.

When coupling with D-Flow FM the model should prepare its output on the D-Flow FM grid as well. In that case the results of the calculation will be stored on the communication file <com-*runid*.dat>

You can also determine to which extent the computations should be monitored. The latter option can be used to specify that D-Waves should produce intermediate (model) results during a SWAN run (test output) if the program produces unexpected results.

The default values for Level of test output and Debug level will be used. **No hotstart file** will be written and used in this Tutorial exercise.

Waves	Waves (W	aves settings) 🗙						
General	Spectral Domain	Physical Processes	Numerical Parameters	Output	Domain specific settings			
🔿 Map)				Tables			
Map file	interval			60 [min]	Write tables	\checkmark		
					Write 1D spectra	\checkmark		
					Write 2D spectra	\checkmark		
					Location file		Waves.loc	
Hot	start				Miscellaneous			
Write/re	ad hotstart				Test output level		0	
					Trace subroutine calls			
					Write NetCDF	\checkmark		
					Use NetCDF single precision			

Figure 4.20: Data group: Output

4.11 Validation

After the input is completed, select File / Save As to save the project.

Right click on the D-Waves model in the **Project** window and select *Validate* to validate the model input. A Validation report will appear, see Figure 4.21.

) W	aves (Waves M	odel)			
0	Waves Mode	Domain			
ē	Waves Mode	Time Poin	ls		
C	Waves Mode	Boundarie	S		
C	Waves Model	Area			
C	Flow coupling				
C	Waves Mode	Properties			
e	Output param	eters			

Figure 4.21: Validation Report

4.12 Simulation

The simulation can be executed now.

To do this, right click on the D-Waves model in the Project window and select Run Model.

Project	🕶 д 🗙 🕕 Validation Report (Waves) 🗙 🌍 Waves
4	👰 Waves (Waves Model)
🖃 📆 Project1	📀 Waves Model Domain
	🚫 Waves Model Time Points
🗈	Merge with: oundaries
🖨 - 😽	Turn into or Move to Integrated Model
	Open With
	Run Model ers
	Stop Model
i 🔂 🐋	Clear Model Output
- 26	Cut
	Сору
	Delete
L	Rename
	Import
	Export
済	Expand All
	Collapse All
<	Settings
S	Validate
Properties	* * *
WaveModel	▼
₽ 2↓ 🖻	
Y Run mode	
Validate before	True
Show model ru	

Figure 4.22: Start a simulation

In the foreground the status of the simulation is displayed in an active window. Possible messages will be displayed in the Messages window at the bottom of the Delft3D Flexible Mesh Suite, see Figure 4.23.

After the simulation has finished you are **strongly advised** to inspect the SWAN run log file that can be found in the **Project** window under /menuOutput to check if all went according to plan, see Figure 4.23.

You can also **check the results** under *Output* in the **Project** window, see <wavm-*runid*.nc> for different output parameters.

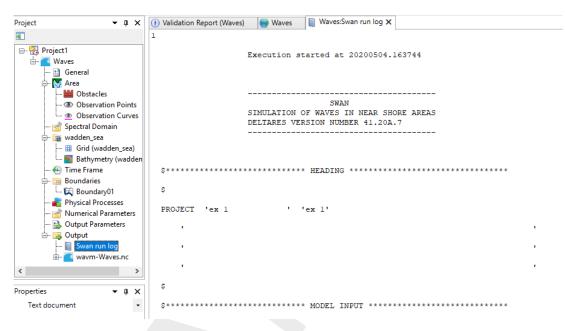


Figure 4.23: The SWAN run log and Messages window

4.13 Postprocessing

The result files of the calculation are stored in a Netcdf format and in the NEFIS file format. The NEFIS result files are: <wavm-runid.dat> and <wavm-runid.def>. The results of the calculation can be visualised using Delft3D-QUICKPLOT.

First, check the convergence by inspecting the SWAN log file and the spatial results dHs and dT_{m01} . What are your findings?

Visualize the following items:

- 1 Wave fields for the items (H_s and T_{m01}), including wave vectors (black) and wind vectors (white). Focus on the area behind the barrier islands (fix wave height between 0–1m))
- 2 Difference in significant wave height of last iteration
- 3 Plot the 1D spectra in one plot for the location before and after the obstacle.
- 4 Plot the wave height over your obstacle.

Do you understand why:

- 1 The directional spreading behind the barrier islands changes between the different timesteps? **Visualize this**
- 2 T_{m02} changes behind the barrier islands?

5 All about the modelling process

5.1 Introduction

In order to set up a D-Waves model you must prepare an input file. The input file stores all the parameters used for a wave computation with D-Waves. The main categories are:

- ♦ model input
- ♦ boundary conditions
- ♦ parameters that define the physical processes being modelled
- parameters that define the numerical techniques used to solve the equations that describe the physical processes
- ♦ parameters that control the D-Waves (SWAN) computation and store its results

Within the range of realistic values, it is likely that the solution is sensitive to the selected parameter values, so a concise description of all parameters is required. The input data (defined by you) is stored in so-called Master Definition file for D-Waves or the *MDW* file (<*.mdw>), which contains references to the additional attribute files. This set of files is the input for a D-Waves calculation.

In section 5.2 we discuss some general aspects of the *MDW* file and its attribute files. In section 5.3 we introduce the filenames and their extension. In section 5.4 Setting up a D-Waves model we explain how to work with the D-Waves Graphical User Interface.

5.2 *MDW* file, attribute files and file formats

The Master Definition Wave file (*MDW* file) is the input file for the wave program. It contains all the necessary data that is required to define a wave model and run a wave computation. Some of the parameter values are given directly in the *MDW* file. Other parameters are defined in attribute files, referred to by specific statements in de *MDW* file. The latter is particularly the case when parameters contain a large number of data (e.g. spatially varying data such as a variable wind or friction field). The user-defined attribute files are listed and described in Appendix A.

The D-Waves module in Delft3D Flexible Mesh Suite or D-HYDRO Suite is a tool that is used to assign values to all the necessary parameters or to import the names of the attribute files into the *MDW* file. When the data you entered is saved, an *MDW* file, containing all the specified data, is created in the selected working directory.

Although you are not supposed to work directly on the *MDW* file (with a text editor) it is useful to have some idea of what its structure is, as it reflects the idea of the designer on how to handle large amounts of input data. For an example of an *MDW* file, see Appendix C.

The basic characteristics of an MDW file are:

- It is an ASCII file.
- The file is divided in datagroups.
- It is keyword based.

The *MDW* file is an intermediate file between the D-Waves module and SWAN (the computational core). As it is an ASCII-file, it can be transported to an arbitrary hardware platform. Consequently, the D-Waves Graphical User Interface and SWAN do not necessarily have to reside in the same hardware platform.

As explained before, input parameters that contain a lot of data are defined in attribute files. How to set up these attribute files is explained elsewhere in this chapter. The *MDW* file only contains permanent input parameters and references to these attribute files. The formats of all attribute files (and of the *MDW* file itself) are described in detail in Appendix A.

The *MDW* file and its attribute files form a complete set, defining a simulation. When storing your simulation input, always make sure you include the complete set of *MDW* file and attribute files.

5.3 Filenames and conventions

The names of the *MDW* file and its attribute files have a specific structure, some aspects are obligatory while others are only advised or preferred.

The name of an *MDW* file must have the following structure: <run-id.mdw>. The <run-id> consists of an arbitrary combination of (maximum 252) letters and numbers. This <run-id> will be part of the result files to safeguard the link between an *mdw* file and the result files.

Restriction:

♦ The maximum length of the <run-id> is 252 characters!

The names of the attribute files follow the general file naming conventions, i.e. they have the following structure: <name>.<extension>. Where:

- <name> is any combination of characters allowed for filenames, except spaces.
- There is no limitation other than the platform dependent limitations; you are referred to your platform manual for details. We suggest to add some continuation character, for instance <-number> to the <name> to distinguish between various updates or modifications of the file.

Quantity	Filename and mandatory extension		
Bathymetry or water depth	<name>.dep</name>		
Curvilinear grid	<name.grd></name.grd>		
Grid enclosure	<name.enc></name.enc>		
Wind field	<name.wnd></name.wnd>		
Spiderweb wind field	<name.spw></name.spw>		
Spectral wave boundary	<name.bnd></name.bnd>		
Wave boundary conditions	<name.bcw></name.bcw>		
1D wave spectrum	<name.sp1></name.sp1>		
2D wave spectrum	<name.sp2></name.sp2>		
Curves	<name.pol></name.pol>		
Output locations	<name.loc></name.loc>		
Obstacles	<name.obs></name.obs>		
Obstacles locations	<name.pol></name.pol>		

The <extension> is mandatory as indicated below.

5.4 Setting up a D-Waves model

In this section, all input parameters in the data groups of the **Project** window of D-Waves will be described. We will describe all data groups in consecutive order. For each input quantity we give:

- ♦ A short description of its meaning. In many cases we add a more comprehensive discussion to put the quantity and its use in perspective.
- ♦ The restrictions on its use.
- ♦ The range of allowed values, called its domain, and its default value.

5.4.1 General

In the General tab (Figure 5.1) you can set the basic settings of your model, i.e.:

Seneral Spectral Domain Physical	Processes Numerical Param	ieters Output t	-			-		
 General Settings 			 Communication 			 Simulation mode 		
Project name		ex 1	Communication file			Simulation mode	stationary	~
Project number		ex 1	Write communication files			D-Waves time step		10 [min]
Reference date	2019-10-23	\$ *	Communication interval		60 [min]	D-Waves time interval		60 [min]
Directional convention	nautical	•	Append to com file			Verify input		
			Mass flux to com	\checkmark				
Default domain data			 Online-coupling time frame 			\odot		
Bed level	none	~	Coupled to D-Flow FM			Coordinate system		<empty></empty>
Water level	none		Coupling start time	2019-10-23 00:00:00	<u></u>			
Velocity	none	~	Coupling stop time	2019-10-24 00:00:00	÷ ~			
Velocity type	depth-averaged	~	Coupling time step	0d00:00:00.000				
Wind	none	v						
Boundaries								
Jse SWAN domain boundary from ile								
Spectrum File:								

Figure 5.1: Overview of the General tab

5.4.1.1 Default domain data

You can specify a flow computation from which the results are to be used as input for the wave computation. If you want to do this, this is the place to define the D-Flow FM computation to be used.

All needed results are stored in the communication file (com-file) produced by the D-Flow FM computation Therefore, the D-Flow FM com-file has to be present in your working directory.

Remarks:

- When using a D-Flow FM model, make sure that the selected mdu-file and its associated com-file are located in your working directory, since the two modules will communicate with each other by this com-file.
- During the computations, D-Waves determines the water depth from the bottom level, the water level and the water level correction. Bottom levels are defined as the level of the bottom relative to some horizontal datum level (e.g. a still water level), positive downward. Water levels are defined with respect to the same datum as the bottom; the water level is positive upward.

5.4.1.2 Online-coupling time frame

Coupled to D-Flow FM (default: off)

You can specify a coupling time frame for online coupling with the D-Flow FM module.

- ♦ Coupling start time
- ♦ Coupling stop time
- ♦ Coupling time step

5.4.1.3 General Settings

Project name (default: < Empty>)

The name of the project may not be longer than 16 characters (restriction of the SWAN computational core).

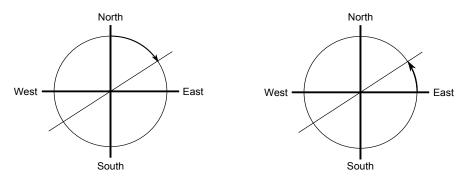
Project number (default: (default: <Empty>)

The project number may not be longer than 4 characters (restriction of the SWAN computational core).

Reference date (default: 01-Jan-00 12:00 AM)

This is the reference date relative to which the time points are defined. For accuracy reasons choose the reference date not too far away from your time points.

Directional convention (default: nautical)


In the input and output of SWAN the direction of wind and waves are defined according to either the *Cartesian* convention or the *Nautical* convention (see Figure 6.1 for definitions).

♦ Cartesian

This option indicates that the Cartesian convention for wind and wave direction (SWAN input and output) will be used. The direction is the angle between the vector and the positive x-axis, measured counter-clockwise (the direction where the waves are going to or where the wind is blowing to).

♦ Nautical

This option indicates that the nautical convention for wind and wave direction will be used. The direction of the vector from the geographic North measured clockwise + 180° . This is the direction where the waves are coming from or where the wind is blowing from.

Figure 5.2: Nautical convention (left panel) and Cartesian convention (right panel) for direction of winds and (incident) waves

5.4.1.4 Coordinate system

Coordinate system (default: <Empty>) By clicking the earth icon, you can select the coordinate system (CS) for your model. Use the quick search bar to find your coordinate system either by name or EPSG code (Figure 5.3). The list of coordinate systems that you select is limited to those that are supported by SWAN (the computational core of D-Waves), i.e. only the WGS84 geographic coordinate system and most projected coordinate systems.

Note: Please note that the coordinate system is not (yet) a property in the D-Waves import files. At the moment it is only used to convert geographical model information to the coordinate system of the (central) Map.

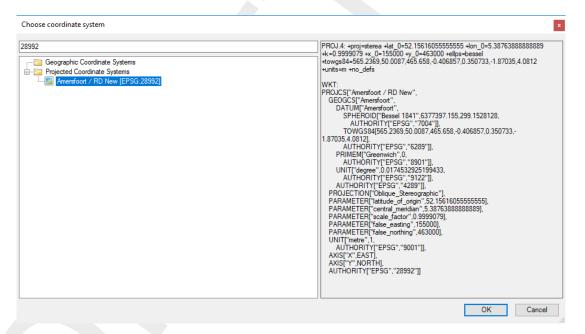


Figure 5.3: Set the model coordinate system

5.4.1.5 Simulation mode

Simulation mode (default: stationary)

You can choose between stationary, quasi-stationary and non-stationary. The stationary mode is considered to be justified when the residence time of the simulated waves – the time that waves require to travel through the model domain – is small relative to the time scale of changes in the wave boundary conditions and forcing (e.g. wind and currents). As the model domain increases or time scale of changes in boundary conditions and forcing decreases, non-stationary simulations become more appropriate. In case of non-stationary simulations you have to provide the time step and time interval of the non-stationary simulations.

D-Waves time step (default: 10 minutes)

The time step for non-stationary simulations

D-Waves time interval (default: 60 minutes)

The time interval for non-stationary simulations

Verify input (default: off)

During pre-processing SWAN checks the input data. Depending on the severity of the errors encountered during this pre-processing, SWAN does not start a computation.

5.4.2 Area

The model area contains geographical (GIS based) features, such as observation points & curves and obstacles. These features can be added using the *Map / Waves Region 2D/3D* ribbon (see Figure 5.4 and Figure 5.5). If you would like to change the locations of the features use the *Edit* section of the *Map* ribbon (see Figure 5.6).

You can delete features by selecting them and simply using the <delete> key.

By selecting a feature from the map and double clicking it, the attribute table will open with feature specific properties (see Figure 5.7 for obstacles).

All the features defined in Area are defined by their own coordinates. They are not based on grid coordinates. So, their location remains the same when the grid is changed (for example by (de-)refining).

File	Home	View	Tools	Map				
Add C	bstacle	坐 Add C	bservation Cr	oss-Section				
🛱 Add Wave Boundary								
👁 Add C	Add Observation Point							
	Waves Region 2D / 3D							

Figure 5.4: Add Area features using the Region ribbon

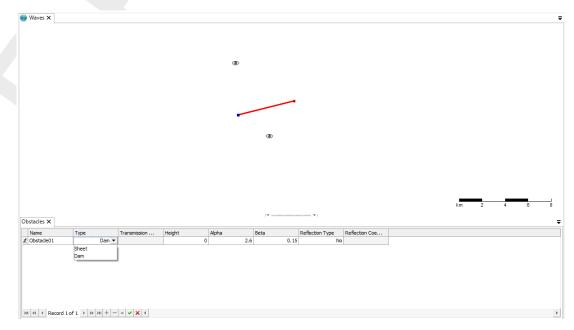


Figure 5.5: Area features added to map

Figure 5.6: Edit Area features using the Edit section of the Map ribbon

5.4.2.1 Obstacles

Obstacles are sub-grid features through which waves are transmitted or against which waves are reflected or both at the same time (see Figure 5.7). The location of the obstacle is defined by a sequence of corner points of a polyline. The obstacles interrupt the propagation of the waves from one grid point to the next wherever this obstacle line is located between two neighbouring grid points of the computational grid (the resolution of transmission or blockage is therefore equal to the computational grid spacing).

Ob	stacles 🗙								-
	Name	Туре	Transmission	Height	Alpha	Beta	Reflection Type	Reflection Coefficient	
Þ	Obstacle01	Sheet	0				No		
144	Record 1 o	f1 🕨 🗰 🕂 🗕	▲ ✓ X 4						Þ

Figure 5.7: Attribute table with properties of obstacles

With respect to the type of the obstacle, the following options are available:

- Sheet: With this option you indicate that the transmission coefficient is a constant along the obstacle.
- ◇ Dam: With this option you indicate that the transmission coefficient depends on the incident wave conditions at the obstacle and on the obstacle height (which may be submerged).
- Reflections: With this option you can specify if the obstacle is reflective (specular or diffusive; possibly in combination with transmission) and the constant reflection coefficient.
- Reflection coefficient (default = 0)
 The reflection coefficient is formulated in terms of ratio of reflected significant wave height over incoming significant wave height.
- Transmission coefficient (default = 1.0) is the transmission coefficient for the significant wave height (coefficient = 0.0: no transmission = complete blockage).

```
\diamond Height (default = 0.0)
```

The elevation of the top of the obstacle above the reference level (same reference level as for bottom etc.); use a negative value if the top is below that reference level (possibly in case of submerged obstacles).

Alpha (default = 2.6)
 Coefficient determining the transmission coefficient depending on the shape of the dam.
 Beta (default = 0.15)

Coefficient determining the transmission coefficient depending on the shape of the dam.

Remark:

♦ When *Reflections* at obstacles are activated, then for each computational grid the directional space should be *Circle* covering the full circle of 360°. When a lot of obstacles have to be defined, the procedure described above can be quite cumbersome. Therefore, it also possible to define a number of obstacles by importing a polyline file in which you defined the corner points of the obstacles. **Note:** Still to be implemented.

, _

- Remarks:
 - ♦ Reflections will only be computed if the directional directions covers the full 360°.
 - ♦ In case of specular reflection the angle of reflection equals the angle of incidence.
 - In case of diffuse and scattered reflection the angle of reflection does not equal the angle of incidence.

Domain:

Parameter	Lower limit	Upper limit	Default	Unit
Reflection			No	
Reflection coefficient	0.0	1.0	0.0	-
Sheet (max number = 250):				
Transmission coefficient	0.0	1.0	1.0	-
Dam (max number = 250):				
Height	-100.	+100.	0.	m
Alpha	1.8	2.6	2.6	-
Beta	0.1	0.15	0.15	-

5.4.2.2 Observation Points

With *Observation Points* you can specify (monitoring) locations at which wave output should be generated by D-Waves, similar to the observation points in Delft3D FM. The values of the output quantities at the observation points are interpolated from the computational grid and written to a *Table* file. You can add, edit and delete these points using the ribbons. Alternatively, you can import the locations from a <*.loc> file. The format of the <*.loc> file should be:

- $x_1 \quad y_1$
- $x_2 \quad y_2$
- ÷ ÷
- $x_n \quad y_n$

5.4.2.3 Observation Curves

With *Observation Curves* you can specify a (curved) output curve at which wave output should be generated by D-Waves. Actually this curve is a broken line, defined by you in terms of segments. The values of the output quantities along the curve are interpolated from the computational grid. You can add, edit and delete these curves using the ribbons.

Remark:

♦ The names of output curves and/or curve segments as displayed in the attribute table, are not input for SWAN. The names are only displayed for your convenience. Moreover, the number in the names does not determine the order.

5.4.3 Spectral Domain

For each computational grid the spectral resolution in both directional and frequency space needs to be specified. SWAN only assigns wave energy to the wave directions and wave frequencies specified in the spectral resolution. In this tab you can set the default setting for the spectral resolution (see Figure 5.8). By default these settings will be assigned to all computational grids.

General Spectral Domain Physical F	Processes Numerical Parameters Output
Defaults	
Directional space	circle *
Nr. of directions	36
Start direction	0 [deg]
End direction	360 [deg]
Nr. of frequencies	24
Min. frequency	0.03 [Hz]
Max. frequency	1 [Hz]

Figure 5.8: The Spectral Domain tab

5.4.3.1 Directional space

- ♦ Directional space (default: circle)
- This option indicates that the spectral directions cover the full circle. This option is default. *Start direction*
 - This is the first direction (in degrees) of the directional sector. It can be defined either in the Cartesian or the Nautical convention (see Figure 6.1), but this has to be consistent with the convention adopted for the computation, to be defined in the Data Group *Physical parameters*.

♦ End direction

It is the last direction of the sector (required for option Sector; Cartesian or Nautical convention, but in consistency with the convention adopted for the computation). **Remarks:**

- ♦ The *Start direction* should be smaller than the *End direction*.
- ♦ When *Reflections* at obstacles are activated, then the spectral directions must cover

the full circle of 360° .

Number of directions

This is the number of bins in the directional space. For *Circle* this is the number of subdivisions of a full circle, so the spectral directional resolution is

 $\Delta \theta = 360^{\circ} / (\text{Number of directions})$

5.4.3.2 Frequency space

♦ Minimum frequency

This is the lowest discrete frequency that is used in the calculation (in Hz).

♦ Maximum frequency

This is the highest discrete frequency that is used in the calculation (in Hz).

♦ Number of frequency bins

The number of bins in frequency space is one less than the number of frequencies. It defines the resolution in frequency space between the lowest discrete frequency and the highest discrete frequency. This resolution is not constant, since the frequencies are logarithmically distributed. The number of frequency bins depends on the frequency resolution Δf that you require (see SWAN UM (2000)).

For the experienced user, it is also possible to prescribe two out of minimum frequency (FreqMin), maximum frequency (FreqMax) and number of frequency bins (NFreq) in the MDW-file, see Appendix section A.1. SWAN will calculate the third variable with a formula that can be found in the SWAN manual (see SWAN UM (2000)).

Parameter	Lower limit	Upper limit	Default	Unit
Start direction	-360	360	0	degree
End direction	-360	360	0	degree
Number of directions	4	500	36	-
Lowest frequency	0.0	-	0.03	Hz
Highest frequency	0.0	-	1	Hz
Number of frequency bins	4	-	24	-

Domain:

5.4.4 Outer (domain)

Under <domainname> in the **Project** window you define the geographic location, size and orientation of the computational grids by creating or importing one or more attribute grid files, which are curvilinear grids generated with RGFGRID (<*.grd> file). The grids can be defined in a common Cartesian coordinate system or in a spherical coordinate system.

Remarks:

- ◇ The computational grid must be much larger than the domain where wave results are needed, because of the 'shadow' zone on both sides of the wave incident direction.
- ♦ A grid that is created in RGFGRID always has an associated enclosure file (*.enc). This file is not imported in the WAVE-GUI, but it will be used in case computational grids are nested, so it has to be present in the working directory.

5.4.4.1 Import and export grids and bathymetries

You can import and export a (previously generated) grid using the RMClick on the <domainname> (see Figure 5.9). Likewise, import and export a bathymetry for the domain. The imported grid/bathymetry can be viewed and inspected in the central map (see Figure 5.10).

Figure 5.9: Import a RGFGRID file from the Project window

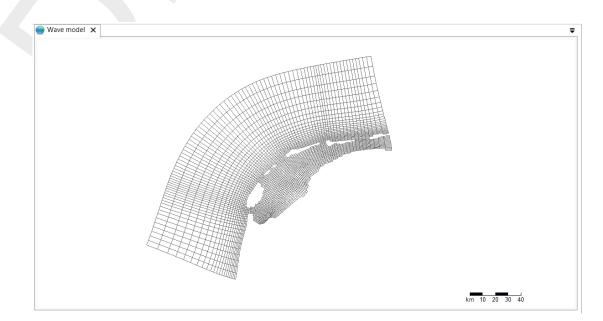


Figure 5.10: Visualize the D-Waves grid on the central map

5.4.4.2 Create and/or edit grids in RGFGRID

To generate a grid from scratch or edit an imported grid, double click on *Grid* under *Outer* in the **Project** window and RGFGRID will open (see Figure 5.11). You can use RGFGRID to create and edit the grid. See the RGFGRID manual for more information.

Note: Do not forget to save the RGFGRID project before closing RGFGRID to save the changes and transfer them to Delft3D Flexible Mesh Suite.

Remark:

Я

♦ The formats of the grid files are defined in Appendix A.

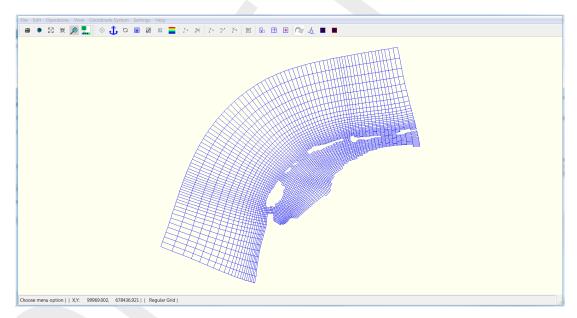


Figure 5.11: Create and/or edit the grid using RGFGRID

Create and/or edit bathymetries using the spatial editor

Note: this is not yet implemented for D-Waves.

There is an alternative way to inspect or adjust the bathymetry (*Outer / Bed Level*). As the bathymetry is stored together with the *Grid*, you can use the spatial editor of D-Flow Flexible Mesh, as follows:

- ♦ **Export** the grid (**RMClick** on the D-Waves *Outer / Grid*)
- ♦ Add a (temporary) D-Flow FM model
- ♦ Switch to D-Flow FM model and read the D-Flow FM User Manual:
 - D Import the exported D-Waves grid (RMClick on D-Flow FM Grid)
 - Inspect or adjust the bathymetry
 - Switch to D-Waves
- Import the grid with the adjusted bathymetry (RMClick on the D-Waves Outer / Grid)

5.4.4.4 Nest domains

D-Waves supports the use of nested computational grids in one wave computation. The idea of nesting is to have a coarse grid for a large area and one or more finer grids for smaller areas. The coarse grid computation is executed first and the finer grid computations use these results to determine their boundary conditions. Nesting can be repeated on ever decreasing scales.

When you want to use the nesting option, you have to create multiple domains. This can be done using the RMClick on the<domainname> in the **Project** window (see Figure 5.12). You can add either an interior or exterior domain. A popup will show up in which you can enter the name of the new domain (Figure 5.13). Consequently, the <domainname> with the corresponding grid and bathymetry features will show up in the **Project** window (see Figure 5.14). The grids and bathymetries can be added, edited and imported in the same way as described before for one domain.

Remarks:

- ♦ The first grid cannot be nested in another one. For this grid, boundary conditions must be specified in the Data Group *Boundaries*.
- ♦ A grid cannot be nested in itself. An error message will pop up if you try this.

🖃 📆 Project1
🗄 🚾 Waves
🗈 General
🗄 😽 Area
💣 Spectral Domain
🕀 - 📷 Outer
📴 B 🛛 Add Interior Domain
🔤 P 🗙 Delete Domain
····· 🖆 Namencari arameters
🔜 Output Parameters
📖 🕞 Output

Figure 5.12: Add a domain

Enter domain name				
inner				
	ОК	Cancel		

Figure 5.13: Popup: Specification of domain name

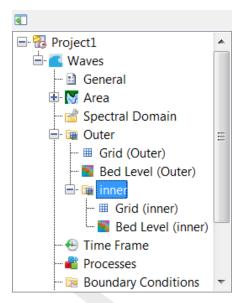


Figure 5.14: Create or edit the grid using RGFGRID

5.4.5 Time Frame

Double clicking *Time Frame* in the **Project** window, will open the *Time Point Editor* tab.

Waves Time Point Editor (Waves) 🗙		5
Hydrodynamics: Constant V Wind: Constant V		
瀺 Clipboard import 🕘 Csv import 🖳 Csv export	Hydrodynamics (consta	nt values)
Tme [-]	Water Level:	0
	Velocity X:	0
	Velocity Y:	0
	Wind (constant values)	
	Speed:	0
	Direction:	0
« « « « « « « « » » » » » » » » » » »		
Export to boundaries Import from boundary		

Figure 5.15: Specification Hydrodynamics and Wind conditions

Here, you can specify the *Hydrodynamics* and *Wind* conditions, for the wave computation.

5.4.5.1 Time points

There are three options: you want to perform a standalone wave computation; you want to perform an offline coupling with D-Flow FM; or you want to perform an online coupling with D-Flow FM; or you want to perform an online coupling with D-Flow Flexible Mesh (in the latter two cases, you specified a D-Flow FM computation in the tab *General*). Time steps must be specified for a standalone wave computation. For a coupled flow-wave (online or offline) computation the time steps (and corresponding hydrodynamics and wind) are usually copied from the D-Flow FM computation.

In the time point editor you can add time points in the following ways:

- ♦ Using the table
- Here you can add time points step by step (Figure 5.16)
- ♦ Pasting copied time series
- Using the RMClick you can paste copied time series (Figure 5.17)
- Using the time series generator
 Note: Still to be implemented

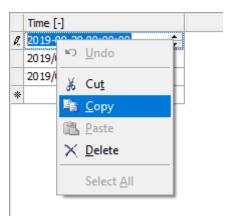


Figure 5.17: Pasting time points from another series or program, for example Excel

5.4.5.2 Hydrodynamics

If the hydrodynamics are not copied from a D-Flow FM computation, they have to be specified here. You have two options:

♦ Constant

Specify constant hydrodynamics for all time points (Figure 5.18)

Per time point
 Specify time point specific hydrodynamics (Figure 5.19)

Note: These are the hydrodynamics for all domains.

Hydrodynamics (constant values)					
Water Level:	0				
Velocity X:	0				
Velocity Y:	0				

Figure 5.18: Specification of constant hydrodynamics

😋 Waves 🛛 Time Point Ed	litor (Waves) 🗙				Ŧ
Hydrodynamics: Per Tim		itant V			
Clipboard import 🖲 Csv	import 🖳 Csv export		-Wind (co	instant values)	
Time [-]	Water Level [m] Velocity X [m/s] Velocity	Y [m/s]	Speed	10	
2019/09/20 00:00:00	0 0	0			
2019/09/21 00:00:00	-1 0	0	Directi	ion: 315	
2019/09/22 00:00:00	1.5 0	0		· · · · · · · · · · · · · · · · · · ·	
·	L				
H4 44 4 Record 4 of 4 → →	* + - • • * * •		•		
Export to boundaries	; Import from boundary				

Figure 5.19: Specification of hydrodynamics per time point

5.4.5.3 Wind

If the wind conditions are not copied from a D-Flow FM computation, they have to specified here. You have three options:

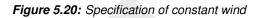
♦ Constant

Specify constant wind for all time points (Figure 5.20)

♦ Per time point

Specify time point specific wind conditions which are uniform in space (Figure 5.21)

♦ From file


Include wind conditions from a file (Figure 5.22). The wind conditions can be variable in space and time. Optionally, you can add a spiderweb wind field (usually used for the specification of cyclone winds) on top of the (background) wind field (Figure 5.23).

Mark that the specification of the wind will apply for all (nested) domains. The ranges for the (uniform) wind conditions are as follows:

Domain:

Parameter	Lower limit	Upper limit	Default	Unit
Wind speed	0.0	50.0	0.0	m/s
Wind direction	-360.0	360.0	0.0	deg

-Wind (constant values)-	
Speed:	10
Direction:	315

Waves Time Point Ed	litor (Waves) 🗙						
Hydrodynamics: Constan	nt v	Wind:	Per Timepoint	\checkmark			
鸐 Clipboard import	import 🖳 Csv expo	ort				Hydrodynamics (co	onstant values)
Time [-]	Wind Speed [m/s]	Wind Direction [-]				Water Level:	-1
2019/09/20 00:00:00	10						
2019/09/21 00:00:00 2019/09/22 00:00:00	15					Velocity X:	q
2015/05/22 00.00.00	12		-				-
			-			Velocity Y:	0
• • • • Record 4 of 4 → → →	w + - - - × ₹ ₹					(F)	
	5	Import from bour					

Figure 5.21: Specification of wind per time point

ind Files			
Input Type:	Wind vector	\sim	ø
Wind velocity:	X/Y-components Wind vector Spider web grid	[
	Input Type:	Input Type: Wind vector X/Y-components Wind velocity: Wind vector	Input Type: Wind vector X/Y-components Wind velocity: Wind vector

Figure 5.22: Specification of wind (field) from file

Wind Files	
Input Type:	Spider web grid 🛛 🗸 💋
Spider web:	

Figure 5.23: Add a spiderweb wind field

5.4.6 Boundary Conditions

Under *Boundaries* in the **Project** window the incident wave conditions at the boundary of the first, and only the first, computational grid are prescribed. All other computational grids (i.e. the nested grids) obtain their boundary information from the other grids.

In the D-Waves computations, wave boundary conditions may be specified at different sides. The general procedure to specify boundary conditions is the following. For each of the boundaries:

- 1 Draw the boundary location(s) in the central map (can be multiple points to create a proper poly-line).
- 2 Enter Boundary Editor tab by double click on the added boundary (or double click on a selected boundary name in the Project Tree, under Boundaries)
- 3 Specify whether the values of the incident wave conditions are *Uniform* or *Spatially varying* along the boundary.
- 4 Specify whether the values of the incident wave conditions are *Parameterized (Constant in time)*, *Parameterized (Timeseries)* or *Spectrum based (from file)*.
- 5 Activate the support point(s) that you want to put conditions on.
- 6 Set the spectrum settings (if not loaded from file).
- 7 Specify the condtions (which may be time series)

Below, each of the six steps described above is explained further.

5.4.6.1 Boundary location(s)

You can specify the boundary locations by selecting *Add Boundary* from the *Map / Waves Region 2D/3D* ribbon (see Figure 5.24) and consequently drawing the boundary or boundaries on the central map (see Figure 5.25). The boundary locations are specified in terms of xy coordinates. They will be automatically snapped to the grid. The boundaries are added to the **Project** window under *Boundaries* (Figure 5.26).

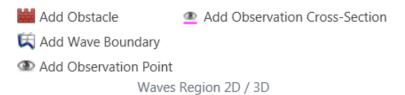


Figure 5.24: Select Add Wave Boundary from the Map / Waves Region 2D/3D ribbon

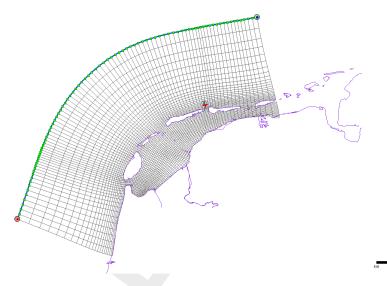


Figure 5.25: Draw the boundary line on the map

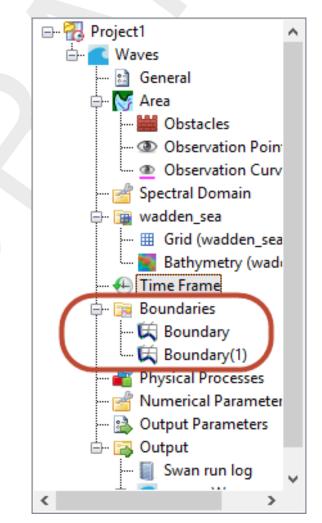


Figure 5.26: Boundaries are added to the Project window under Boundaries

5.4.6.2 Forcing Type

The boundary conditions in SWAN can be specified in terms of integral wave parameters (*Parameterized (Constant in time or time series)*) or they can be read from an external file (*Spectrum based (from file)*). You can select this in the *Boundary conditions* editor.

♦ Parametric

With this option you define the boundary condition as parametric spectral input

♦ From file

With this option the boundary conditions are read from an external file (<*.bnd>)

5.4.6.3 Spatial definition

The spatial definition can be set in the attribute table (see **??**) of the boundary, which you can open by double clicking *Boundary Conditions* in the **Project** window. Alternatively, you can set the spatial definition in the *Boundary conditions* editor (see Figure 5.27), which is opened by double clicking the *Boundary* in the **Project** window or double clicking the boundary in the map view. The boundary condition may be *Uniform* along a boundary, but it may also be *Space-varying:*

♦ Uniform

With this option the wave conditions are uniform along a boundary.

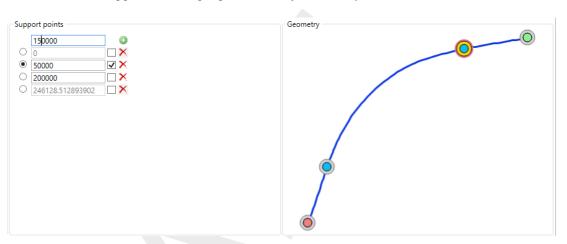
♦ Spatially Varying

With this option the wave spectra can vary along the boundary. The incident wave field is prescribed at a number of support points along the boundary. These points are characterised by their distance from the begin point of the boundary (indicated by the numbers). The wave spectra for grid points on the boundary of the computational grid are calculated by SWAN by spectral interpolation.

Note: When this option is selected Support points can be added/activated in the Support points window.

tings		Suppo	rt points	P	Geometry
ame:	Bounda	ary01 0			0
orcing Type:	Parametrized (Time Series)	· • 4	2964.184		
vatial Definition:	Spatially Varying		11541.93		
meters		Spatia	ly Varying Time Dependent Parameters		
ipe:	Jonswap	×	Clipboard import 🕘 Csv import 🔍 Csv export		
k Enhancement Factor:			me [-] Hs Tp Dir Spreading		- Hs [m] - Tp [s] Dir [deg]
iod:	Peak		119/10/23 00:00:00 \$ 2 8 0 119/10/24 00:00:00 1 5 180	4	
rectional Spreading:	Power	~		18	
				14	0
				10	0
				6	0
				4 2	0
			4 4 Record 1 of 2 ▶ ₩ ₩ + - ▲ ✓ × 4		3 00:00:00.000 2019-10-23 12:00:00.000 2019-10- -10-23 till 2019-10-24) Time [-]
				Generat	

Figure 5.27: Overview of the Boundary conditions *editor*


5.4.6.4 Activate support points

In order to put conditions on the boundaries you first have to activate one (or multiple) support point(s) from the list by selecting the checkbox on the right side of the support point distance (see Figure 5.28, active points have yellow circle around them). In the geometry panel next to

it you can see which of the points along the boundary is selected (Figure 5.28, selected point will be highlighted by red circle).

Note: The starting of the boundary is indicated by a green coloured point, the end of the boundary is indicated by a red coloured point. The grey, bigger circle indicate that point is not active. The red, biggest circle highlights currently selected point.

Figure 5.28: Activate a support point in the Boundary conditions editor and inspect the location of the selected support point in the Geomtery view

5.4.6.5 Spectrum settings

In the spectrum panel the spectrum shape and settings can be selected and set (see Figure 5.29):

Shape: With this option you can define the shape of the input spectra.

♦ JONSWAP (default)

This option indicates that a JONSWAP type spectrum is assumed.

Peak enh. Fact.

This is the peak enhancement parameter of the JONSWAP spectrum. The default value is 3.3.

♦ Pierson-Moskowitz

This option means that a Pierson-Moskowitz type spectrum will be used.

♦ Gauss

This option indicates that a Gaussian-shaped frequency spectrum will be used. If this option is used, the width of the spectrum in frequency space has to be specified. Selecting this option the *Spreading* box will be enabled.

Spreading

Width of the Gaussian frequency spectrum expressed as a standard deviation in [Hz].

Period: With this input you can specify which wave period parameter (i.e. *Peak* or *Mean* period) will be used as input.

♦ Peak (default)

The peak period T_p is used as characteristic wave period.

♦ Mean

The mean wave period T_{m01} is used as characteristic wave period. For the definition see Appendix B.

Directional spreading: With this input you can specify the width of the directional distribution.

The distribution function itself is: $\cos^m(\theta - \theta_{peak})$.

♦ Cosine power (default)

The directional width is expressed with the power m itself.

♦ Degrees (standard deviation)

The directional spreading is expressed in terms of the directional standard deviation of the $[\cos^m(\theta - \theta_{peak})]$ distribution (for a definition see Appendix B).

Parameters			
Shape:	Jonswap	Ŷ	
Peak Enhancement Factor:	Gauss		[-]
	Jonswap		Ľ
Period:	Pierson-Moskowitz		
Directional Spreading:	Power	Ŷ	

Figure 5.29: Select spectrum shape and set corresponding properties

5.4.6.6 Edit conditions

In case of a parameterized wave spectrum, the (time-dependent) conditions can be set in the conditions table and inspected in the corresponding graph (Figure 5.30).

The wave conditions are specified in terms of:

♦ Significant wave height

The significant wave height specified in m.

♦ Wave period

The characteristic period of the energy spectrum. It is the value of the peak period (in s) if option *Peak* is chosen in the *Spectral space* sub-window or it is the value of the mean period if option *Mean* is chosen in the same sub-window.

♦ Direction

Mean wave direction (direction of wave vector in degrees) according to the Nautical or Cartesian convention.

♦ Directional spreading

This is the directional standard deviation in degrees if the option *Degrees* is chosen in the **SWAN Spectral Space** window; or it is the power *m* if the option *Cosine power* is chosen in the same window.

	Time [-]	Hs	Тр	Dir	Spreading	— Hs [m] — Tp [s] — Dir [deg]
	2019/10/23 00:00:00 🚖	2	8	0	4	- Spreading [-]
	2019/10/24 00:00:00	1	5	180	4	
*						180
						120
						80 60 40
						60

Figure 5.30: Specify parameterized wave boundary conditions and inspect in graph

5.4.6.7 Defaults and ranges

0	Domain:
Γ	Daramoto

Parameter	Lower limit	Upper limit	Default	Unit
Number of points to specify boundary	0	300	0	-
Peak enhancement factor	1.	10.	3.3.	-
Distance from corner point	0.	Y-length	0.	m
Significant wave height	0.	25.	0.	m
Spectral peak period	0.1	20.	1.	S
Wave direction	-360	360.	0.	0
Directional spreading - cosine power	1.	800.	4.	m
Directional spreading - de- grees	2	180	30	0

5.4.7 Physical Processes

SWAN contains a number of physical processes (see Figure 5.31) that add or withdraw wave energy to or from the wave field. For initial SWAN runs, it is strongly advised to use the default values. First it should be determined whether or not a certain physical process is relevant to the result. If this cannot be decided by means of a simple hand computation, you can perform a SWAN computation without and with the physical process included in the computations, in the latter case using the standard values chosen in SWAN.

General Spectral Domain Physica	al Processes Numerical Parameters Output		
 Constants 		General	
Water level correction	0 [m]	Physics mode	third generation ~
Gravitational acceleration	9.81 [m/s2]	Wave setup	
Water density	1025 [kg/m3]	Wind growth	\checkmark
North direction w.r.t. x-axis	90 [deg]	Quadruplets	✓
Minimum water depth	0.05 [m]	White capping formulation	Komen v
		Refraction	\checkmark
		Frequency shifting	✓
		Wave force computation	dissipation v
Breaking		Triads	
Depth induced breaking	\checkmark	Triads	
Alpha	1 [-]		
Gamma	0.73 [-]		
Bed friction		Diffraction	
Bed friction	JONSWAP v	Diffraction	
Bed friction coef.	0.038		

Figure 5.31: Overview of the Physical Processes

5.4.7.1 Constants

Water level correction The default value is "0"

Gravitional acceleration The gravitational acceleration in m/s^2 . The default value is "9.81" [m/s²].

Water density

The water density ρ in kg/m³. The default value is "1025" [kg/m³].

North direction

The direction of North with respect to the x-axis (Cartesian convention). The default value is "90" [sidegrees] i.e. x-axis pointing East.

Minimum water depth

The threshold depth in [m]; in the computation any positive depth smaller than this threshold depth is set to the threshold depth. The default 0.05 m.

Domain:

Parameter	Lower limit	Upper limit	Default	Unit
Gravitional acceleration	9.8	10.	9.81	m/s^2
Water density	950.	1050.	1025.	kg/m ³
North direction	-360.	360.	90.	deg
Minimum water depth	-	-	0.05	m

5.4.7.2 Breaking

Depth induced breaking (default: off) With this option you can influence depth-induced wave breaking in shallow water in the SWAN model (see section 6.3.1). Ticking off this depth-induced term is usually unwise, since this leads to unacceptably high wave heights near beaches (the compute wave heights 'explode' due to shoaling effects).

Alpha (default: "1.0") The coefficient for determining the rate of dissipation.

Gamma (default: "0.73") The value of the breaker parameter defined as H_m 0/d.

5.4.7.3 Bed friction

Bed friction (default: jonswap)

With this option you can activate bed friction (see section 6.3.1). If this option is not used, SWAN will not account for bed friction.

In SWAN three different formulations are available, i.e. that of Hasselmann *et al.* (1973) (*JON-SWAP*), Collins (1972); Madsen *et al.* (1988)).

◊ jonswap

This indicates that the semi-empirical expression derived from the JONSWAP results for bed friction dissipation (Hasselmann *et al.*, 1973) will be activated.

Bed friction coefficient. The coefficient of the JONSWAP formulation. It is equal to 0.067 m²s⁻³ for wind sea conditions (default value) and equal to 0.038 m²s⁻³ for swell conditions.

Collins. This indicates that the expression of Collins (1972) will be activated.

Bed friction coefficient. The Collins bed friction coefficient, default = 0.015.

Madsen et al.

This indicates that the expression of Madsen et al. (1988) is activated.

Bed friction coefficient. The equivalent roughness length scale of the bed. Default = 0.05 m.

5.4.7.4 General

Physics mode (default: *third generation*):

♦ first generation

With this option you indicate that SWAN should run in first-generation mode.

♦ second generation

With this option you indicate that SWAN should run in second-generation mode (for more information, reference is made to the SWAN manual).

♦ third generation

With this option you indicate that SWAN should run in third-generation mode. Activated are wind input, quadruplet interactions and white-capping. Triads, bottom friction and depth-induced breaking are not activated by this option.

◊ None

With this option you indicate that no deep water physical processes (i.e. wind, whitecapping and quadruplets) are activated.

Wave setup (default: off) If this option is activated, the wave induced set-up is computed and

accounted for in the wave computations (during the computation it is added to the depth that is obtained from the bottom and the water level). This option should only be used if SWAN is applied as standalone model or if wave-induced set-up is not accounted for in the flow computations.

Wind growth (default: on) If this option is activated, wind growth is included in the computation. **Note:** Only if wind is included in the computation.

Quadruplets (default: on) If this option is activated, quadruplets are included in the computation. **Note:** Only if wind is included in the computation.

White capping formulation (default: *komen*) For the white-capping two model descriptions are possible:

- ◊ off
- ◊ komen ((Komen et al., 1984)) (default)
- westhuysen (citepWesthuysen2007)

Refraction (default: on)

If this option is activated, refraction is included in the computation.

Frequency shifting (default: on)

If this option is activated, frequency shifting is included in the computation

Wave force computation (default: dissipation 3d)

With the integration of the *fully spectral* SWAN model under the Delft3D model it is possible to compute the wave forces on the basis of the energy wave dissipation rate or on the gradient of the radiation stress tensor (SWAN UM, 2000).

5.4.7.5 Triads

Triads (default: off)

With this option you can activate the triad wave-wave interactions in the SWAN model (see section 6.3.1). Ticking off this feature means that the non-linear wave-wave interactions due to the triads are not taken into account. *LTA* means that the Lumped Triad Approximation (LTA) of Eldeberky and Battjes (1996) is used.

5.4.7.6 Diffraction

Diffraction (default: off) With this option you can activate diffraction in the wave computation. The default option is de-activated. The diffraction implemented in SWAN is based on a phase-decoupled refraction-diffraction approximation (Holthuijsen *et al.*, 1993). It is expressed in terms of the directional turning rate of the individual wave components in the 2D wave spectrum. The approximation is based on the mild-slope equation for refraction and diffraction, omitting phase information.

5.4.8 Numerical Parameters

In the *Numerical Parameters* tab you can modify parameters that affect the stability and accuracy of the numerical computation (see Figure 5.32). To obtain robust results with acceptable accuracy, apply the default diffusion parameters.

General	Spectral Domain	Physical Proces	ses Numerical Parameters	Output
Nun	nerical Parameters			
Direction	nal discretisation		().5 [-]
Frequen	cy discretisation		().5 [-]
RChHsTr	n01		0.	02
RChMea	nHs		0.	02 (m
RChMea	nTm01		0.	02
Converg	ence percentage			98 [%
Max. nr.	of iterations			15

Figure 5.32: Overview of Numerical Parameters

♦ Discretisation

In the first two input fields you can control the amount of diffusion of the implicit scheme in the directional space through the *Directional Discretisation* (CDD) parameter and frequency space through the *Frequency Discretisation* (CSS):

Directional Discretisation

A value of CDD = "0.0" corresponds to a central scheme and has the largest accuracy (diffusion ≈ 0) but the computation may more easily generate spurious fluctuations. A value of CDD = "1.0" corresponds to an upwind scheme and it is more diffusive and therefore preferable if (strong) gradients in depth or current are present. The default value is CDD = "0.5".

Frequency Discretisation

A value of CSS = "0.0" corresponds to a central scheme and has the largest accuracy (diffusion \approx 0) but the computation may more easily generate spurious fluctuations. A value of CSS = "1.0" corresponds to an upwind scheme and it is more diffusive and therefore preferable if (strong) gradients in current are present. The default value is CSS = "0.5".

♦ Then, some accuracy criteria (to terminate the iterative computations)

With these options you can influence the criteria for terminating the iterative procedure in the SWAN computation (for convergence criteria of SWAN see section 6.5.1).

Relative change

The default value is "0.02".

- □ Relative change with respect to the mean value The default value is "0.02", for both H_s and T_{m01} .
- Convergence percentage of wet grid points The default value is "98%".
- You can also control the terminating procedure by giving the maximum number of iterations *Max. nr. of iterations* after which the computation stops. The default value is "15". However, it is recommended to repeat the final computations with "40" and study the convergence of the computation.

Domain:

Parameter	Lower limit	Upper limit	Default	Unit
Directional Discretisation	0.	1.	0.5	-
Frequency Discretisation	0.	1.	0.5	-
Relative change	0.	-	0.02	-
Relative change w.r.t. mean value (H $_s$ and T_{m01})	0.	-	0.02	-
Convergence percentage	0.	100%	98%	-
Max. nr. of iterations	1	-	15	-

5.4.9 Output Parameters

In the tab *Output Parameters* (see Figure 5.33) you can determine to which grid (i.e. D-Waves or D-Flow FM grid) output is written and to which extent the computations should be monitored. The latter option can be used to specify that D-Waves should produce intermediate (model) results during a SWAN run (test output) if the program produces unexpected results.

🔵 Waves	Waves (Wa	oves settings) 🗙						
General	Spectral Domain	Physical Processes	Numerical Parameters	Output	Domain specific settings			
🔿 Map					 Tables 			
Map file i	interval			50 [min]	Write tables	\checkmark		
					Write 1D spectra	\checkmark		
					Write 2D spectra	\checkmark		
					Location file		Waves.loc	
Hots	tart				Miscellaneous			
Write/rea	id hotstart				Test output level		0	
					Trace subroutine calls			
					Write NetCDF	\checkmark		
					Use NetCDF single pro	ecision 🗌		

Figure 5.33: Overview of Output parameters

There are a couple of options available to monitor the SWAN computation:

Level of test output (Default: 0)

For values up to 50 test output is made that can be interpreted by you. For values above 50, information for the programmer is produced. For values under 100 the amount is usually reasonable, for values above 200 it can be huge.

Trace subroutine calls (Default: off)

In case an error occurs, the name of the subroutine where the error occurred is written.

Write and use hotstart file (Default: off)

This option can be used to write the entire wave field at the end of a computation to an initialisation file and use this field as initial condition in a subsequent SWAN run. In many cases with a series of wave runs, this option can save significantly amount of computational time. In case of a flow-wave coupling with a frequent update, the hydrodynamic conditions have not changed a lot since a previous wave computation. Therefore SWAN can use the

results of a previous SWAN run as the initial condition for the wave field.

The format of the hotstart file is identical to the format of the files written by the 2D-spectrum output in the pre-defined locations.

Remarks:

- It is recommended to gradually vary the wave directions in the <wavecon> file. When computing a wave condition using an existing HOT-file, which is generated during a wave computation with a large difference in wave direction, the use of a HOT-file can lead to unrealistic wave fields. Check the wave results carefully.
- When applying only one wave condition (e.g. during a flow-wave coupling) it can be wise to increase the required accuracy (in % of wet points) initially. The subsequent wave computations may be completed faster in this way, although the first wave computation will probably need more computational time.

Test output level (Default: off)

During pre-processing SWAN checks the input data. Depending on the severity of the errors encountered during this pre-processing, SWAN does not start a computation. You can influence the error level above which SWAN will not start computations. The error level is coded as follows:

- ♦ Warnings (=1)
- ♦ Errors (=2) (possibly automatically repaired or repairable by SWAN)
- ♦ Severe Errors (=3)

D-Waves offers two options to save the results of the calculation: on the communication file (if available) and on an output file.

♦ Output for FLOW grid (Default: off)

Click in the check box to turn this option on or off. If you select *Output for FLOW grid*, a communication file is available and will be updated. The D-Flow FM model (and other modules) can read and use the wave data directly, since the information is automatically converted to the curvilinear grid definition by the wave module. In Appendix A a description of the output parameters on the communication file is given.

A curvilinear grid file (D-Flow FM grid) is required to enable this conversion. In case hydrodynamic results from a D-Flow FM simulation are used, the D-Flow FM input file has been selected. The grid definition is read from this file. If no hydrodynamic results are used, a *Select grid file* button is displayed and a grid file can be selected. If a grid file is selected, still a communication file is needed. The WAVE simulation will expect that the communication file <com-name> is available. The communication file can be generated by running a stand-alone D-Flow FM simulation or a online D-Flow FM-D-Waves simulation.

♦ Output for computational grids (Default: off)

If this option is chosen, detailed output is generated on one or more computational grids. This output is written to a NEFIS file with basename WAVM (waves map file). In Appendix A a description of the output parameters on the <wavm-*.dat> file is given.

♦ Output for specific locations

For the locations defined as observation points you can have three types of output: *Table*, *1D spectra* or *2D spectra*.

The parameters written to the *Table* file are:

XP, YP	coordinates of output location (with respect to the problem coor-
	dinates)
DEPT	water depth [m]

HSIG	significant wave height [m]
DIR	mean wave direction [°]
Tpeak	peak wave period [s]
TM01	mean wave period (T_{m01}) [s]
DSPR	directional spreading of the waves [°]
UBOT	root-mean-square value of the maximum of the orbital motion
	near the bottom [m/s]
XWindv, YWindv	wind components [m/s]
Xvel, Yvel	current velocity components [m/s]

The parameters written in the 1D spectra file are:

- absolute frequencies [Hz]
- \square energy densities [J m⁻² Hz⁻¹]
- average nautical direction [degrees]
- directional spreading [degrees]

The parameters written in the 2D spectra file are:

- absolute frequencies [Hz]
- spectral nautical directions [degrees]
- energy densities [J m⁻² Hz⁻¹ deg⁻¹]

Remarks:

- ♦ The Table output for specific locations is stored in file <wavh-run-id.nc> (From Delft3D version 4.04.01, no table file is generated).
- ♦ The 1D spectra output for specific locations is stored in files < run-idnit0j.sp1>in case of multiple grids and multiple time points. For the overall computational grid i = 1, for the first nested grid i = 2, etc. For the first time point j = 1, for the second j = 2, etc.
- \diamond Similar for the 2D spectra output in < run-idnit0j.sp2 > files.
- ♦ In case of only one grid and multiple time points the files are <*run-id*t0*j*.sp1> and <*run-id*t0*j*.sp2>.
- In case of multiple grids and only one time points the files are <run-idni.sp1> and <run-idni.sp2>.
- ♦ In case of only one grid and only one time points the files are <*run-id.*sp1> and <*run-id.*sp2>.
- ♦ Output curves

The following output quantities will be generated by D-Waves at the output locations along a curve.

XP, YP	coordinates of output location (with respect to the problem coordinates)
DIST	distance along the output curve in [m]
DEPT	depth in [m]
HSIG	significant wave height [m]
PER	mean wave period (T_{m01} , [s])
DIR	mean wave direction [degrees]
DSPR	directional spreading of the waves [degrees]
DISS	dissipation rate [J m $^{-2}$ s $^{-1}$]
WLEN	mean wave length [m]
U,V	current velocity [m/s]
All the data of	of each output curve is presented in a table and will be saved in only one file,
named: <cu< td=""><td>rves.run-id>.</td></cu<>	rves.run-id>.

6 Conceptual description

6.1 Introduction

The purpose of this chapter is to give some general background with respect to the unit and coordinate system, the grids (resolution, orientation etc.) and the boundary conditions of the SWAN model. Advice will be given how to choose the basic input for Delft3D-WAVE for the SWAN computations.

A brief description is given with respect to the physics (see section 6.3) and numerics (section 6.4) that have been implemented in the SWAN model. This description has been copied with permission of Delft University of Technology, The Netherlands (personal communication with dr N. Booij and dr L.H. Holthuijsen, 1999) - from the SWAN manual for SWAN version 40.41. The description given here is indicative only. For a full and proper description reference is made to SWAN UM (2000).

6.2 General background

6.2.1 Units and coordinate systems

Delft3D-WAVE expects all quantities that are input by the user, to be expressed by means of the S.I. system of units: m, kg, s and composites of these with accepted compounds, such as Newton [N] and Watt [W]. Consequently the wave height and water depth are in [m], wave period in [s] etc. Directions and spherical coordinates are in degrees [°] and not in radians. Delft3D-WAVE can operate in a flat plane and on a spherical earth.

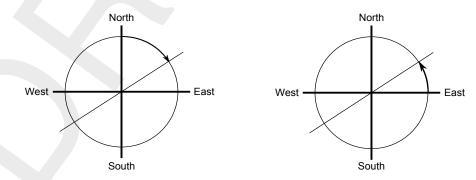


Figure 6.1: Nautical convention (left panel) and Cartesian convention (right panel) for direction of winds and (incident) waves

In the input for Delft3D-WAVE the directions of winds and (incident) waves are defined relative to the coordinate system according to a Nautical convention or Cartesian convention, see Figure 6.1 (for definitions reference is made to Appendix B).

In the Cartesian system, all geographic locations and orientations in SWAN, e.g. for the computational grid or for output points, are defined in one common Cartesian coordinate system with origin (0,0) by definition. This geographical origin may be chosen totally arbitrarily by you.

In the spherical system, all geographic locations and orientations in Delft3D-WAVE are defined in geographic longitude and latitude. Both coordinate systems are designated in this manual as the problem coordinate system. Figure 6.2 shows how the locations of the various grids are determined with respect to the problem coordinates.

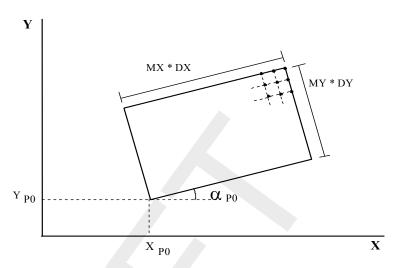


Figure 6.2: Definition of grids (input, computational and output grids) in Delft3D-WAVE

6.2.2 Choice of grids and boundary conditions

For your convenience Delft3D-WAVE accepts input and provides output on different grids.

It is not uncommon that a bottom grid is available as an existing data set without any relation whatsoever to Delft3D-WAVE. You may want output on an entirely different grid (but in the same region of course), whereas the computations in Delft3D-WAVE may require a different grid altogether.

For these reasons Delft3D-WAVE operates with different grids (each may have a different origin, orientation and resolution).

Input grids on which the bathymetry, current field and wind field (if present) are given by you; one computational grid on which Delft3D-WAVE performs the computations, and one (or more) output grid(s) on which you require output of Delft3D-WAVE.

During the computations (on the computational grid) Delft3D-WAVE obtains bathymetry and current information by bilinear interpolation from the input grid. The output on the output grid is in turn obtained in Delft3D-WAVE by interpolation from the computational grid. These interpolations will cause some loss of accuracy.

Input grids

Bathymetry and current input need to be provided to Delft3D-WAVE on so-called input grids (they need not be identical with the computational, the output grids or other input grids). It is best to make an input grid larger than the computational grid, in fact, so large that it completely covers the computational grid for every expected situation. In the region outside the input grid Delft3D-WAVE assumes that the bottom level and friction coefficient are identical to those at the nearest boundary of the input grid (lateral shift from that boundary). In the regions not covered by this lateral shift (i.e. in the outside corner quadrants of the input grid), a constant field equal to the value at the nearest corner point of the input grid is taken.

You should choose the resolution for the input grid such that relevant spatial details in the bathymetry and in the current pattern are well resolved. Special care is required in cases with sharp and shallow ridges in the sea bottom. In such cases the shallowest parts are of vital importance to obtain good Delft3D-WAVE results (during propagation the waves are 'clipped' by surf breaking at some maximum value determined by the minimum depth). To represent

these shallowest parts in the bottom grid, you may want to have one grid line coincide with the ridge top (even if this means "moving" the ridge to the nearest line in the bathymetry grid). If this is not done, the computed wave height behind the shoal may well be computed higher than it is in reality, because the ridge is seen deeper in Delft3D-WAVE than it actually is (too coarse resolution to see shallow peak of the ridge).

Computational grid and boundary conditions

The computational grid is a grid in four dimensions: x-, y- and θ -, σ - space. The computational grid in x-, y-space must be chosen by you with care. You should choose the location of the up-wave boundary in water so deep that refraction effects have not (yet) influenced the wave field. However, a deep water up-wave boundary is not a strict requirement for Delft3D-WAVE. This advice is not applicable if the incoming waves are provided by a model which takes refraction into account, for instance Delft3D-WAVE itself (in a nested mode).

The computational grid must be larger than the area where you want to know the wave parameters. The length (in *x*-direction) needs not be longer than from the up-wave boundary to the most down-wave point of interest. The width (in *y*-direction) must be larger than that of the area of interest, because along each lateral side of the grid (if there is an open boundary along that side) a region exists where the wave field is disturbed (in Delft3D-WAVE) by an import of zero energy from the lateral boundaries (see Figure 6.3). This is not the case if the wave conditions along the lateral boundaries are specified by you or obtained from a previous Delft3D-WAVE run or if that boundary is closed (e.g. by land). The angle of the line dividing the disturbed area from the undisturbed area from the up-wave corner points (of the computational grid) is approximately equal to the half-power width of the directional energy distribution of the waves (this half-power width is typically 20° to 40° for waves generated by the local wind or 5° to 10° for swell).

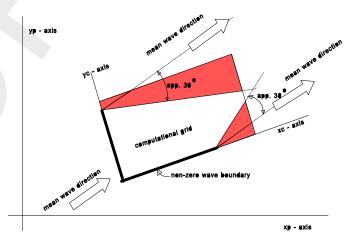


Figure 6.3: Disturbed regions in the computational grid

The spatial resolution of the computational grid should be sufficient to resolve relevant details of the wave field. Usually a good choice is to take the resolution of the computational grid approximately equal to that of the input (bathymetry/current) grid.

The computational spectral grid needs also to be provided by you. In frequency space it is simply defined by a minimum and maximum frequency and the frequency resolution which is proportional to the frequency itself (e.g. $\Delta f = 0.1 f$). In the frequency domain this lowest frequency and highest frequency and the number of frequencies must be chosen. The value of lowest frequency must be slightly smaller than 0.6 times the value of the lowest peak frequency expected. The value of the highest frequency must be at least 2.5 to 3 times the highest peak frequency expected; usually it is chosen less than or equal to 1 Hz.

In directional space the directional range is the full 360° unless you specify a limited directional range. This may be convenient (less computer time and/or space) when waves travel towards a coast within a limited sector of 180° , say. The directional resolution is determined by the number of discrete directions that is provided by you. For wind seas with a directional spreading of typically 30° on either side of the mean wave direction, a resolution of 10° seems enough whereas for swell with a directional spreading of less than 10° , a resolution of 2° or less may be required. If you are confident that no energy will occur outside a certain directional sector (or is willing to ignore this energy), then the computations by SWAN can be limited to the directional sector that does contain energy. This may often be the case of waves propagating to shore within a sector of 180° around some mean wave direction.

Nonstationary situations are simulated with the SWAN model as quasi-stationary with repeated model runs. This implies that as e.g. the flow computations progress in time, a (stationary) wave computation is performed at specified, intermediate time levels. Such stationary wave computations are usually considered to be acceptable since the travel time of the waves from the seaward boundary to the coast is mostly relatively small compared to the time scale of variations in incoming wave field, the wind or tidal induced variations in depth and currents.

6.2.3 Output grids

Delft3D-WAVE can provide output on the computational grids or on grids that are independent from the computational grid like the Delft3D-FLOW grid. It must be pointed out that the information on a flow grid is obtained from the computational grid by spatial interpolation. Therefore it is wise to choose a resolution that is fine enough to show relevant spatial details.

The spatial interpolation implies that some inaccuracies are introduced. It also implies that bathymetry or current information on an (output) plot has been obtained by interpolating twice: once from the input grid to the computational grid and once from the computational grid to the output grid. If the input, computational and output grids are identical, then no interpolation errors occur.

In the regions where the output grid does not cover the computational grid Delft3D-WAVE assumes output values equal to zero.

6.3 Physical background of SWAN

6.3.1 Action balance equation

In SWAN the waves are described with the two-dimensional wave action density spectrum, even when non-linear phenomena dominate (e.g., in the surf zone). The rational for using the spectrum in such highly non-linear conditions is that, even in such conditions it seems possible to predict with reasonable accuracy this spectral distribution of the second order moment of the waves (although it may not be sufficient to fully describe the waves statistically). The spectrum that is considered in SWAN is the action density spectrum $N(\sigma, \theta)$ rather than the energy density spectrum $E(\sigma, \theta)$ since in the presence of currents, action density is conserved whereas energy density is not (Whitham, 1974). The independent variables are the relative frequency σ (as observed in a frame of reference moving with the current velocity) and the wave direction θ (the direction normal to the wave crest of each spectral component). The action density is equal to the energy density divided by the relative frequency: $N(\sigma, \theta) = E(\sigma, \theta)/\sigma$. In SWAN this spectrum may vary in time and space.

In SWAN the evolution of the wave spectrum is described by the spectral action balance

equation which for Cartesian coordinates is (e.g., Hasselmann et al. (1973)):

$$\frac{\partial}{\partial t}N + \frac{\partial}{\partial x}c_xN + \frac{\partial}{\partial y}c_yN + \frac{\partial}{\partial \sigma}c_{\sigma}N + \frac{\partial}{\partial \theta}c_{\theta}N = \frac{S}{\sigma}$$
(6.1)

The first term in the left-hand side of this equation represents the local rate of change of action density in time, the second and third term represent propagation of action in geographical space (with propagation velocities c_x and c_y in x- and y-space, respectively). The fourth term represents shifting of the relative frequency due to variations in depths and currents (with propagation velocity c_{σ} in σ -space). The fifth term represents depth-induced and current-induced refraction (with propagation velocity c_{θ} in θ -space). The expressions for these propagation speeds are taken from linear wave theory (Whitham, 1974; Mei, 1983; Dingemans, 1997). The term $S (= S(\sigma, \theta))$ at the right-hand side of the action balance equation is the source term in terms of energy density representing the effects of generation, dissipation and non-linear wave-wave interactions. A brief summary of the formulations that are used for the various source terms in SWAN is given next.

The following processes are accounted for in SWAN:

- ♦ generation by wind,
- ♦ dissipation by whitecapping, bottom friction and depth-induced breaking,
- ♦ non-linear wave-wave interaction (quadruplets and triads).

In addition wave propagation through obstacles and wave-induced set-up of the mean sea surface can be computed in SWAN. These phenomena are addressed separately below (see Sections 6.3.2 and 6.3.3).

Wind input

Transfer of wind energy to the waves is described in SWAN with a resonance mechanism (Phillips, 1957) and a feed-back mechanism (Miles, 1957). The corresponding source term for these mechanisms is commonly described as the sum of linear and exponential growth:

$$S_{in}(\sigma,\theta) = A + BE(\sigma,\theta)$$
(6.2)

in which A and B depend on wave frequency and direction, and wind speed and direction. The effects of currents are accounted for in SWAN by using the apparent local wind speed and direction. The expression for the term A is due to Cavaleri and Malanotte-Rizzoli (1981) with a filter to avoid growth at frequencies lower than the Pierson-Moskowitz frequency (Tolman, 1992a). Two optional expressions for the coefficient B are used in the model. The first is taken from an early version of the WAM model (known as WAM Cycle 3, the WAMDI group (1988)). It is due to Snyder *et al.* (1981), rescaled in terms of friction velocity U_* by Komen *et al.* (1984). The drag coefficient to relate U_* to the driving wind speed at 10 m elevation U_{10} is taken from Wu (1982). The second expression for B in SWAN is taken from the most recent version of the WAM model (known as WAM Cycle 4, Komen *et al.* (1994)). It is due to Janssen (1991a) and it accounts explicitly for the interaction between the wind and the waves by considering atmospheric boundary layer effects and the roughness length of the sea surface. The corresponding set of equations is solved (as in the WAM model) with the iterative procedure of Mastenbroek *et al.* (1993).

Dissipation

The dissipation term of wave energy is represented by the summation of three different contributions: whitecapping $S_{ds,w}(\sigma,\theta)$, bottom friction $S_{ds,b}(\sigma,\theta)$ and depth-induced breaking $S_{ds,br}(\sigma,\theta)$.

Whitecapping is primarily controlled by the steepness of the waves. In presently operating third-generation wave models (including SWAN) the whitecapping formulations are based on a pulse-based model (Hasselmann, 1974), as adapted by the WAMDI group (1988):

$$S_{ds,w}(\sigma,\theta) = -\Gamma \tilde{\sigma} \frac{k}{\tilde{k}} E(\sigma,\theta)$$
(6.3)

where Γ is a steepness dependent coefficient, k is the wave number and sigma and k denote a mean frequency and a mean wave number, respectively (cf. the WAMDI group (1988)). Komen *et al.* (1984) estimated the value of Γ by closing the energy balance of the waves in fully developed conditions. This implies that this value depends on the wind input formulation that is used.

An alternative description for whitecapping in SWAN is given by Van der Westhuysen *et al.* (2007) and Van der Westhuysen (2007), which is an adapted form of the expression of Alves and Banner (2003). The latter is based on the apparent relationship between wave groups and whitecapping dissipation. This adaption is due to the fact that it can also be applied to mixed sea-swell conditions and in shallow water. This was done by removing the dependencies on mean spectral steepness and wavenumber in the original expression, and by applying source term scaling arguments for its calibration (see below). This led to the following expression for whitecapping dissipation:

$$S_{ds,w}(\sigma,\theta) = -C'_{ds} \left(\frac{B(k)}{B_r}\right)^{p/2} (\tanh(kh))^{(2-p_0)/4} \sqrt{gk} E(\sigma,\theta)$$
(6.4)

in which the density function B(k) is the azimuthal-integrated spectral saturation, which is positively correlated with the probability of wave group-induced breaking. It is calculated from frequency space variables as follows:

$$B(k) = \int_{0}^{2\pi} c_g k^3 E(\sigma, \theta) d\theta$$
(6.5)

and $B_r = 1.75 \times 10^{-3}$ is a threshold saturation level. The proportionality coefficient is set to $C'_{ds} = 5.0 \times 10^{-5}$. When $B(k) > B_r$, waves break and the exponent p is set equal to a calibration parameter p_0 . For $B(k) \le B_r$ there is no breaking, but some residual dissipation proved necessary. This is obtained by setting p = 0.

Depth-induced dissipation may be caused by bottom friction, by bottom motion, by percolation or by back-scattering on bottom irregularities (Shemdin *et al.*, 1978). For continental shelf seas with sandy bottoms, the dominant mechanism appears to be bottom friction (e.g., Bertotti and Cavaleri (1994)) which can generally represented as:

$$S_{ds,b}(\sigma,\theta) = -C_{bottom} \frac{\sigma^2}{g^2 \sinh^2(kd)} E(\sigma,\theta)$$
(6.6)

in which C_{bottom} is a bottom friction coefficient. A large number of models have been proposed since the pioneering paper of Putnam and Johnson (1949). Hasselmann *et al.* (1973)

suggested to use an empirically obtained constant. It seems to perform well in many different conditions as long as a suitable value is chosen (typically different for swell and wind sea; Bouws and Komen (1983)). A non-linear formulation based on drag has been proposed by Hasselmann and Collins (1968) which was later simplified by Collins (1972). More complicated, eddy viscosity models have been developed by Madsen et al. (1988) (see Weber (1991a)) and by Weber (1989, 1991a,b). Considering the large variations in bottom conditions in coastal areas (bottom material, bottom roughness length, ripple height etc.), there is no field data evidence to give preference to a particular friction model (Luo and Monbaliu, 1994). For this reason, the simplest of each of these types of friction models has been implemented in SWAN: the empirical JONSWAP model of Hasselmann et al. (1973), the drag law model of Collins (1972) and the eddy-viscosity model of Madsen et al. (1988). The effect of a mean current on the wave energy dissipation due to bottom friction is not taken into account in SWAN. The reasons for this are given by Tolman (1992b) who argues that state-of-the-art expressions vary too widely in their effects to be acceptable. He found that the error in finding a correct estimate of the bottom roughness length scale has a much larger impact on the energy dissipation rate than the effect of a mean current.

The process of depth-induced wave-breaking is still poorly understood and little is known about its spectral modelling. In contrast to this, the total dissipation (i.e., integrated over the spectrum) due to this type of wave breaking can be well modelled with the dissipation of a bore applied to the breaking waves in a random field (Battjes and Janssen, 1978; Thornton and Guza, 1983). Laboratory observations (e.g., Battjes and Beji (1992), Vincent *et al.* (1994); Arcilla *et al.* (1994) and Eldeberky and Battjes (1996)) show that the shape of initially unimodal spectra propagating across simple (barred) beach profiles, is fairly insensitive to depth-induced breaking. This has led Eldeberky and Battjes (1995) to formulate a spectral version of the bore model of Battjes and Janssen (1978) which conserves the spectral shape. Expanding their expression to include directions, the expression that is used in SWAN is:

$$S_{ds,br}(\sigma,\theta) = -\frac{D_{tot}}{E_{tot}}E(\sigma,\theta)$$
(6.7)

in which E_{tot} and D_{tot} is the rate of dissipation of the total energy due to wave breaking according to Battjes and Janssen (1978). Adding a quadratic dependency on frequency as suggested by Mase and Kirby (1992) (supported by Elgar *et al.* (1997)) seems to have no noticeable effect on the SWAN results. Chen and Guza (1997) inferred from observations and simulations with a Boussinesq model that the high-frequency levels are insensitive to such frequency dependency because an increased dissipation at high frequencies is compensated approximately by increased non-linear energy transfer (but they did find the frequency dependency to be relevant in time domain). The value of D_{tot} depends critically on the breaking parameter $\gamma = H_{max}/d$ (in which H_{max} is the maximum possible individual wave height in the local water depth d). In Delft3D-WAVE a constant value is available equal to $\gamma = 0.73$ (the mean value of the data set of Battjes and Stive (1985).

Non-linear wave-wave interactions

In deep water, quadruplet wave-wave interactions dominate the evolution of the spectrum. They transfer wave energy from the spectral peak to lower frequencies (thus moving the peak frequency to lower values) and to higher frequencies (where the energy is dissipated by white-capping). In very shallow water, triad wave-wave interactions transfer energy from lower frequencies to higher frequencies often resulting in higher harmonics (Beji and Battjes, 1993) (low-frequency energy generation by triad wave-wave interactions is not considered here).

A full computation of the quadruplet wave-wave interactions is extremely time consuming and not convenient in any operational wave model. A number of techniques, based on parametric methods or other types of approximations have been proposed to improve computational speed (see Young and Van Vledder (1993) for a review). In SWAN the computations are carried out with the Discrete Interaction Approximation (DIA) of Hasselmann *et al.* (1985). This DIA has been found quite successful in describing the essential features of a developing wave spectrum (Komen *et al.*, 1994). For uni-directional waves, this approximation is not valid. In fact, the quadruplet interaction coefficient for these waves is nearly zero (G.Ph. van Vledder, personal communication, 1996). For finite-depth applications, Hasselmann and Hasselmann (1981) have shown that for a JONSWAP-type spectrum the quadruplet wave-wave interactions can be scaled with a simple expression (it is used in SWAN).

A first attempt to describe triad wave-wave interactions in terms of a spectral energy source term was made by Abreu *et al.* (1992). However, their expression is restricted to non-dispersive shallow water waves and is therefore not suitable in many practical applications of wind waves. The breakthrough in the development came with the work of Eldeberky and Battjes (1995) who transformed the amplitude part of the Boussinesq model of Madsen and Sørensen (1993) into an energy density formulation and who parameterised the biphase of the waves on the basis of laboratory observations (Battjes and Beji, 1992; Arcilla, Roelvink, O'Connor, Reniers and Jimenez, 1994). A discrete triad approximation (DTA) for co-linear waves was subsequently obtained by considering only the dominant self-self interactions. Their model has been verified with flume observations of long-crested, random waves breaking over a submerged bar (Beji and Battjes, 1993) and over a barred beach (Arcilla *et al.*, 1994). The model appeared to be fairly successful in describing the essential features of the energy transfer from the primary peak of the spectrum to the super harmonics. A slightly different version, the Lumped Triad Approximation (LTA) was later derived by Eldeberky and Battjes (1996). This LTA is used in SWAN.

6.3.2 Propagation through obstacles

SWAN can estimate wave transmission through a (line-)structure such as a breakwater (dam). Such an obstacle will affect the wave field in two ways, first it will reduce the wave height locally all along its length, and second it will cause diffraction around its end(s). The model is not able to account for diffraction. In irregular, short-crested wave fields, however, it seems that the effect of diffraction is small, except in a region less than one or two wavelengths away from the tip of the obstacle (Booij *et al.*, 1992). Therefore the model can reasonably account for waves around an obstacle if the directional spectrum of incoming waves is not too narrow. Since obstacles usually have a transversal area that is too small to be resolved by the bathymetry grid in SWAN, an obstacle is modelled as a line. If the crest of the breakwater is at a level where (at least part of the) waves can pass over, the transmission coefficient K_t (defined as the ratio of the (significant) wave height at the down-wave side of the dam over the (significant) wave height at the up-wave side) is a function of wave height and the difference in crest level and water level. The expression is taken from Goda *et al.* (1967):

$$K_t = 0.5 \left[1 - \sin\left(\frac{\pi}{2\alpha} \left(\frac{F}{H_i} + \beta\right) \right) \right] \quad \text{for} \quad -\beta - \alpha < \frac{F}{H_i} < \alpha - \beta$$
(6.8)

where F = h - d is the freeboard of the dam and where H_i is the incident (significant) wave height at the up-wave side of the obstacle (dam), h is the crest level of the dam above the reference level (same as reference level of the bottom), d the mean water level relative to the reference level, and the coefficients α , β depend on the shape of the dam (Seelig, 1979):

Case	α	β
Vertical thin wall	1.8	0.1
Caisson	2.2	0.4
Dam with slope 1:3/2	2.6	0.15

The above expression is based on experiments in a wave flume, so strictly speaking it is only valid for normal incidence waves. Since there is no data available on oblique waves it is assumed that the transmission coefficient does not depend on direction. Another phenomenon that is to be expected is a change in wave frequency since often the process above the dam is highly non-linear. Again there is little information available, so in the model it is assumed that the frequencies remain unchanged over an obstacle (only the energy scale of the spectrum is affected and not the spectral shape).

6.3.3 Wave-induced set-up

In a (geographic) 1D case the computation of the wave induced set-up is based on the vertically integrated momentum balance equation which is a balance between the wave force (gradient of the wave radiation stress) and the hydrodynamic pressure gradient (no waveinduced currents exist).

$$F_x + gd\frac{\partial\bar{\eta}}{\partial x} = 0 \tag{6.9}$$

where d is the total water depth (including the wave-induced set-up) and $\bar{\eta}$ is the mean surface elevation (including the wave-induced set-up).

In a 2D case, computations are also based on the vertically integrated momentum balance equation (in two geographic dimensions), supplemented with the observation of Dingemans *et al.* (1987) that the wave-induced currents are mainly driven by the divergence-free part of the wave forces whereas the set-up is mainly due to the rotation-free part of these forces. To compute the set-up, it would then be sufficient to compute the set-up as if the currents are zero, which implies that the divergence of all forces considered would be zero:

$$\frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial}{\partial x} \left(g d \frac{\partial \eta}{\partial x} \right) + \frac{\partial}{\partial y} \left(g d \frac{\partial \eta}{\partial y} \right) = 0$$
(6.10)

Note that divergence = 0 is only an approximation of the true divergence. These two equations have been implemented in SWAN. The 2D set-up module can be activated within Delft3D-WAVE.

6.3.4 Diffraction

To accommodate diffraction in SWAN simulations, a phase-decoupled refraction-diffraction approximation is suggested (Holthuijsen *et al.*, 1993). It is expressed in terms of the directional turning rate of the individual wave components in the 2D wave spectrum. The approximation is based on the mild-slope equation for refraction and diffraction, omitting phase information. It does therefore not permit coherent wave fields in the computational domain.

6.4 Full expressions for source terms

The complete expressions for the physical processes of generation, dissipation and non-linear wave-wave interactions that are available in the SWAN model are given here.

6.4.1 Input by wind

Wave growth by wind is described by:

$$S_{in}(\sigma,\theta) = A + BE(\sigma,\theta) \tag{6.11}$$

in which A describes linear growth and BE exponential growth. It should be noted that the SWAN model is driven by the wind speed at 10 m elevation U_{10} whereas the computations use the friction velocity U_* . For the WAM Cycle 3 formulation the transformation from U_{10} to U_* is obtained with:

$$U_*^2 = C_D U_{10}^2 \tag{6.12}$$

in which C_D is the drag coefficient from Wu (1982) ? :

$$C_D(U_{10}) = \begin{cases} 1.2875 \times 10^{-3} & \text{for } U_{10} < 7.5 \text{ m/s} \\ (0.8 + 0.065 [s/m] \times U_{10}) \times 10^{-3} & \text{for } U_{10} \ge 7.5 \text{ m/s} \end{cases}$$
(6.13)

The expression for B is due to Komen *et al.* (1984). Their expression is a function of U_*/c_{ph} :

$$B = \max\left(0, 0.25 \frac{\rho_a}{\rho_w} \left(28 \frac{U_*}{c_{ph}} \cos(\theta - \theta_w) - 1\right)\right) \sigma$$
(6.14)

in which c_{ph} is the phase speed and ρ_a and ρ_w are the density of air and water, respectively. This expression is also used in WAM Cycle 3 (cf. the WAMDI group (1988)).

6.4.2 Dissipation of wave energy

Whitecapping

The processes of whitecapping in the SWAN model are represented by the pulse-based model of Hasselmann (1974). Reformulated in terms of wave number (rather than frequency) so as to be applicable in finite water depth (cf. the WAMDI group (1988)), this expression is:

$$S_{ds,w}(\sigma,\theta) = -\Gamma \tilde{\sigma} \frac{k}{\tilde{k}} E(\sigma,\theta)$$
(6.15)

where $\tilde{\sigma}$ and k denote the mean frequency and the mean wave number (for expressions see below) respectively and the coefficient Γ depends on the overall wave steepness. This steepness dependent coefficient, as given by the WAMDI group (1988), has been adapted by Günther *et al.* (1992) based on Janssen (1991a,b):

$$\Gamma = \Gamma_{KJ} = C_{ds} \left((1 - \delta) + \delta \frac{k}{\tilde{k}} \right) \left(\frac{\tilde{s}}{\tilde{s}_{PM}} \right)^p$$
(6.16)

For $\delta = 0$ the expression of Γ reduces to the expression as used by the WAMDI group (1988). The coefficients C_{ds} , δ and m are tunable coefficients, \tilde{s} is the overall wave steepness (defined below), \tilde{s}_{PM} is the value of \tilde{s} for the Pierson-Moskowitz spectrum (1964; $\tilde{s}_{PM} = (3.02 \times 10^{-3})^{1/2}$). This overall wave steepness \tilde{s} is defined as:

$$\tilde{s} = \tilde{k}\sqrt{E_{tot}} \tag{6.17}$$

The mean frequency $\tilde{\sigma}$, the mean wave number \tilde{k} and the total wave energy E_{tot} is defined as (cf. the WAMDI group (1988)):

$$\tilde{\sigma} = \left(E_{tot}^{-1} \int_{0}^{2\pi} \int_{0}^{\infty} \frac{1}{\sigma} E(\sigma, \theta) d\sigma d\theta\right)^{-1}$$

$$\tilde{k} = \left(E_{tot}^{-1} \int_{0}^{2\pi} \int_{0}^{\infty} \frac{1}{\sqrt{k}} E(\sigma, \theta) d\sigma d\theta\right)^{-2}$$

$$E_{tot} = \int_{0}^{2\pi} \int_{0}^{\infty} E(\sigma, \theta) d\sigma d\theta$$
(6.18)

The values of the tunable coefficients C_{ds} and δ and exponent p in this model have been obtained by Komen *et al.* (1984) by closing the energy balance of the waves in idealised wave growth conditions (both for growing and fully developed wind seas) for deep water. This implies that coefficients in the steepness dependent coefficient Γ depend on the wind input formulation that is used. For the wind input of Komen *et al.* (1984) (corresponding to WAM Cycle 3; the WAMDI group (1988)):

$$C_{ds} = 2.36 \times 10^{-5},$$
 (6.19)
 $\delta = 0$ and (6.20)
 $p = 4.$ (6.21)

Bottom friction

The bottom friction models that have been selected for SWAN are the empirical model of JONSWAP (Hasselmann *et al.*, 1973), the drag law model of Collins (1972) and the eddy-viscosity model of Madsen *et al.* (1988). The formulations for these bottom friction models can all be expressed in the following form:

$$S_{ds,b}(\sigma,\theta) = -C_{bottom} \frac{\sigma^2}{g^2 \sinh^2(kd)} E(\sigma,\theta)$$
(6.22)

in which C_{bottom} is a bottom friction coefficient that generally depends on the bottom orbital motion represented by U_{rms} :

$$U_{rms}^2 = \int_0^{2\pi} \int_0^\infty \frac{\sigma^2}{\sinh^2(kd)} E(\sigma,\theta) d\sigma d\theta$$
(6.23)

Hasselmann *et al.* (1973) found from the results of the JONSWAP experiment $C_{bottom} = C_{JON} = 0.038 \text{ m}^2 \text{s}^{-3}$ for swell conditions. Bouws and Komen (1983) selected a bottom friction coefficient of $C_{JON} = 0.067 \text{ m}^2 \text{s}^{-3}$ for fully developed wave conditions in shallow water. Both values are available in SWAN.

The expression of Collins (1972) is based on a conventional formulation for periodic waves with the appropriate parameters adapted to suit a random wave field. The dissipation rate is calculated with the conventional bottom friction formulation of Eq. 6.22 in which the bottom friction coefficient is $C_{bottom} = C_f g U_{rms}$ with $C_f = 0.015$ (Collins, 1972). (Note that Collins (1972) contains an error in the expression due to an erroneous Jacobean transformation; see page A-16 of Tolman (1990).)

Madsen *et al.* (1988) derived a formulation similar to that of Hasselmann and Collins (1968) but in their model the bottom friction factor is a function of the bottom roughness height and

the actual wave conditions. Their bottom friction coefficient is given by:

$$C_{bottom} = f_w \frac{g}{\sqrt{2}} U_{rms} \tag{6.24}$$

in which f_w is a non-dimensional friction factor estimated by using the formulation of Jonsson (1966) (cf. Madsen *et al.* (1988)):

$$\frac{1}{4\sqrt{f_w}} + {}^{10}\log\left(\frac{1}{4\sqrt{f_w}}\right) = m_f + {}^{10}\log\left(\frac{a_b}{K_N}\right)$$
(6.25)

in which $m_f = -0.08$ (Jonsson and Carlsen, 1976) and a_b is a representative near-bottom excursion amplitude:

$$a_b^2 = 2 \int_0^{2\pi} \int_0^\infty \frac{1}{\sinh^2(kd)} E(\sigma,\theta) d\sigma d\theta$$
(6.26)

and K_N is the bottom roughness length scale. For values of a_b/KN smaller than 1.57 the friction factor f_w is 0.30 (Jonsson, 1980).

Depth-induced wave breaking

To model the energy dissipation in random waves due to depth-induced breaking, the borebased model of Battjes and Janssen (1978) is used in SWAN. The mean rate of energy dissipation per unit horizontal area due to wave breaking D_{tot} is expressed as:

$$D_{tot} = -\frac{1}{4} \alpha_{BJ} Q_b \left(\frac{\sigma}{2\pi}\right) H_m^2 \tag{6.27}$$

in which $\alpha_{BJ} = 1$ in SWAN, Q_b [-] is the fraction of breaking waves determined by:

$$\frac{1 - Q_b}{\ln Q_b} = -8\frac{E_{tot}}{H_m^2}$$
(6.28)

in which H_m is the maximum wave height that can exist at the given depth and $\bar{\sigma}$ is a mean frequency defined as:

$$\bar{\sigma} = E_{tot}^{-1} \int_0^{2\pi} \int_0^\infty \sigma E(\sigma, \theta) d\sigma d\theta$$
(6.29)

Extending the expression of Eldeberky and Battjes (1995) to include the spectral directions, the dissipation for a spectral component per unit time is calculated in SWAN with:

$$S_{ds,br}(\sigma,\theta) = D_{tot} \frac{E(\sigma,\theta)}{E_{tot}}$$
(6.30)

The maximum wave height H_m is determined in SWAN with $H_m = \gamma d$, in which γ is the breaker parameter and d is the total water depth (including the wave-induced set-up if computed by SWAN). In literature, this breaker parameter γ is often a constant or it is expressed as a function of bottom slope or incident wave steepness (Galvin, 1972; Battjes and Janssen, 1978; Battjes and Stive, 1985; Arcilla and Lemos, 1990; Kaminsky and Kraus, 1993; Nelson, 1987, 1994). Since SWAN is locally defined, the dependency on incident wave steepness cannot be used.

In the publication of Battjes and Janssen (1978) in which the dissipation model is described, a constant breaker parameter, based on Miche's criterion, of $\gamma = 0.8$ was used. Battjes and Stive (1985) re-analysed wave data of a number of laboratory and field experiments and found values for the breaker parameter varying between 0.6 and 0.83 for different types of bathymetry (plane, bar-trough and bar) with an average of 0.73. From a compilation of a large number of experiments Kaminsky and Kraus (1993) have found breaker parameters in the range of 0.6 to 1.59 with an average of 0.79.

6.4.3 Nonlinear wave-wave interactions

Quadruplet wave-wave interactions

The quadruplet wave-wave interactions are computed with the Discrete Interaction Approximation (DIA) as proposed by Hasselmann *et al.* (1985). Their source code (slightly adapted by Tolman, personal communication, 1993) has been used in the SWAN model. In the Discrete Interaction Approximation two quadruplets of wave numbers are considered, both with frequencies:

$$\sigma_{1} = \sigma_{2} = \sigma$$

$$\sigma_{3} = \sigma(1 + \lambda) = \sigma^{+}$$

$$\sigma_{4} = \sigma(1 - \lambda) = \sigma^{-}$$
(6.31)

where λ is a constant coefficient set equal to 0.25. To satisfy the resonance conditions for the first quadruplet, the wave number vectors with frequency σ_3 and σ_4 lie at an angle of $\theta_1 = -11.5^\circ$ and $\theta_2 = 33.6^\circ$ to the two identical wave number vectors with frequencies σ_1 and σ_2 . The second quadruplet is the mirror of this first quadruplet (the wave number vectors with frequency σ_3 and σ_4 lie at mirror angles of $\theta_3 = 11.5^\circ$ and $\theta_4 = -33.6^\circ$.

Within this discrete interaction approximation, the source term $S_{nl4}(\sigma, \theta)$ is given by:

$$S_{nl4}(\sigma,\theta) = S_{nl4}^*(\sigma,\theta) + S_{nl4}^{**}(\sigma,\theta)$$
(6.32)

where $S^*_{nl4}(\sigma, \theta)$ refers to the first quadruplet and $S^{**}_{nl4}(\sigma, \theta)$ to the second quadruplet (the expressions for $S^{**}_{nl4}(\sigma, \theta)$ are identical to those for $S^{*}_{nl4}(\sigma, \theta)$ for the mirror directions) and:

$$S_{nl4}^{*}(\sigma,\theta) = 2\delta S_{nl4}^{*}(\alpha_1,\sigma,\theta) - \delta S_{nl4}^{*}(\alpha_2,\sigma,\theta) - \delta S_{nl4}^{*}(\alpha_3,\sigma,\theta)$$
(6.33)

in which $\alpha_1 = 1$, $\alpha_2 = (1 + \lambda)$ and $\alpha_3 = (1 - \lambda)$. Each of the contributions (i = 1, 2, 3) is:

$$\delta S_{nl4}(\alpha_i \sigma, \theta) = C_{nl4}(2\pi)^2 g^{-4} \left(\frac{\sigma}{2\pi}\right)^{11} \left[E^2(\alpha_i \sigma, \theta) \left(\frac{E^2(\alpha_i \sigma^+, \theta)}{(1+\lambda)^4} + \frac{E^2(\alpha_i \sigma^-, \theta)}{(1-\lambda)^4} \right) - 2 \frac{E^2(\alpha_i \sigma, \theta) E^2(\alpha_i \sigma^+, \theta) E^2(\alpha_i \sigma^-, \theta)}{(1-\lambda^2)^4} \right]$$
(6.34)

The constant $C_{nl4} = 3 \times 10^7$. Following Hasselmann and Hasselmann (1981), the quadruplet interaction in finite water depth is taken identical to the quadruplet transfer in deep water multiplied with a scaling factor R:

$$S_{nl4,\text{finite }depth} = R(k_p d) S_{nl4,\text{infinite }depth}$$
(6.35)

where R is given by:

$$R(k_p d) = 1 + \frac{C_{sh1}}{k_p d} (1 - C_{sh2} k_p d) \exp(C_{sh3} k_p d)$$
(6.36)

in which k_p is the peak wave number of the JONSWAP spectrum for which the original computations were carried out. The values of the coefficients are: $C_{sh1} = 5.5$, $C_{sh2} = 6/7$ and $C_{sh3} = -1.25$. In the shallow water limit, i.e., $k_pd \rightarrow 0$ the non-linear transfer tends to infinity. Therefore a lower limit of $k_pd = 0.5$ is applied (cf. WAM Cycle 4; Komen *et al.* (1994), resulting in a maximum value of $R(k_pd) = 4.43$. To increase the model robustness in case of arbitrarily shaped spectra, the peak wave number k_p is replaced by $k_p = 0.75\bar{k}$ (Komen *et al.*, 1994).

Triad wave-wave interactions

The Lumped Triad Approximation (LTA) of Eldeberky and Battjes (1996), which is a slightly adapted version of the Discrete Triad Approximation of Eldeberky and Battjes (1995) is used in SWAN in each spectral direction:

$$S_{nl3}(\sigma,\theta) = S_{nl3}^{-}(\sigma,\theta) + S_{nl3}^{+}(\sigma,\theta)$$
(6.37)

with

$$S_{nl3}^{+}(\sigma,\theta) = \max\{0, \alpha_{EB} 2\pi c c_g J^2 | \sin(\beta) | \{E^2(\sigma/2,\theta) - 2E(\sigma/2,\theta)E(\sigma,\theta)\}\}$$
(6.38)

and

$$S_{nl3}^{-}(\sigma,\theta) = -2S_{nl3}^{+}(2\sigma,\theta)$$
(6.39)

in which α_{EB} is a tunable proportionality coefficient. The bi-phase β is approximated with

$$\beta = -\frac{\pi}{2} + \frac{\pi}{2} \tanh\left(\frac{0.2}{Ur}\right) \tag{6.40}$$

with Ursell number Ur:

$$Ur = \frac{g}{8\sqrt{2}\pi^2} \frac{H_s \bar{T}^2}{d^2}$$
(6.41)

with $\overline{T} = 2\pi/\overline{\sigma}$. Usually, the triad wave-wave interactions are calculated only for $0.1 \leq Ur \leq 10$. But for stability reasons, it is calculated for the whole range $0 \leq Ur \leq 10$. This means that both quadruplets and triads are computed at the same time. The interaction coefficient J is taken from Madsen and Sørensen (1993):

$$J = \frac{k_{\sigma/2}^2 (gd + 2c_{\sigma/2}^2)}{k_{\sigma}d \left(gd + \frac{2}{15}gd^3k_{\sigma}^2 - \frac{2}{5}\sigma^2d^2\right)}$$
(6.42)

Wave-induced set-up

In a geographic 1D case the computation of the wave induced set-up is based on the vertically integrated momentum balance equation which is a balance between the wave force (gradient of the wave radiation stress normal to the coast) and the hydrostatic pressure gradient (note that the component parallel to the coast causes wave-induced currents but no set-up):

$$\frac{dS_{xx}}{dx} + \rho g H \frac{d\bar{\eta}}{dx} = 0 \tag{6.43}$$

where $H = d + \bar{\eta}$ is the total water depth (including the wave-induced set-up), d is the bottom level, $\bar{\eta}$ is the mean surface elevation (including the wave-induced set-up) and

$$S_{xx} = \rho g \int \left(n \cos^2 \theta + \frac{n-1}{2} \right) E \, d\sigma d\theta \tag{6.44}$$

Deltares

is the radiation stress tensor.

Observation and computations based on the vertically integrated momentum balance equation of Dingemans *et al.* (1987) show that the wave-induced currents are mainly driven by the divergence-free part of the wave forces whereas the set-up is mainly due to the rotationfree part of these forces. To compute the set-up, it would then be sufficient to consider the divergence of the momentum balance equation. If the divergence of the acceleration in the resulting equation is ignored, the result is:

$$\frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial}{\partial x} (\rho g H \frac{\partial \bar{\eta}}{\partial x}) + \frac{\partial}{\partial y} (\rho g H \frac{\partial \bar{\eta}}{\partial y}) = 0$$
(6.45)

Diffraction

In a simplest case, we assume there are no currents. This means that $c_{\sigma} = 0$. Let denotes the propagation velocities in geographic and spectral spaces for the situation without diffraction as: $c_{x,0}$, $c_{y,0}$ and $c_{\theta,0}$. These are given by:

$$c_{x,0} = \frac{\partial \omega}{\partial k} \cos(\theta), \qquad c_{y,0} = \frac{\partial \omega}{\partial k} \sin(\theta), \qquad c_{\theta,0} = -\frac{1}{k} \frac{\partial \omega}{\partial h} \frac{\partial h}{\partial n}$$
 (6.46)

where k is the wave number and n is perpendicular to the wave ray. We consider the following eikonal equation:

$$K^2 = k^2 (1+\delta)$$
(6.47)

with δ denoting the diffraction parameter as given by:

$$\delta = \frac{\nabla (cc_g \nabla H_s)}{cc_g H_s} \tag{6.48}$$

Due to diffraction, the propagation velocities are given by:

$$c_x = c_{x,0}\overline{\delta}, \qquad c_y = c_{y,0}\overline{\delta}, \qquad c_\theta = c_{\theta,0}\overline{\delta} - \frac{\partial\overline{\delta}}{\partial x}c_{y,0} + \frac{\partial\overline{\delta}}{\partial y}c_{x,0}$$
 (6.49)

where $\bar{\delta} = \sqrt{1+\delta}$.

6.5 Numerical implementation

The integration of the action balance equation has been implemented in SWAN with finite difference schemes in all five dimensions (time, geographic space and spectral space). In Delft3D-WAVE, SWAN is applied in a stationary mode so that time has been omitted from the equations. Below the propagation schemes in geographical and spectral space are briefly described.

The geographic space is discretised with a rectangular grid with constant resolutions Δx and Δy in x- and y-direction respectively (in fact, this rectangular grid is a special case of the curvi-linear grid that has been programmed in SWAN. The spectrum in the model is discretised with a constant directional resolution $\Delta \theta$ and a constant relative frequency resolution $\Delta \sigma / \sigma$ (logarithmic frequency distribution). For reasons of economy, an option is available to compute only wave components travelling in a pre-defined directional sector ($\theta_{min} < \theta < \theta_{max}$; e.g., those components that travel shorewards within a limited directional sector). The discrete frequencies are defined between a fixed low-frequency cut-off and a

fixed high-frequency cut-off (the prognostic part of the spectrum). For these frequencies the spectral density is unconstrained. Below the low-frequency cut-off (typically $f_{min} = 0.04$ Hz for field conditions) the spectral densities are assumed to be zero. Above the high-frequency cut-off (typically 1 Hz for field conditions) a diagnostic f^{-m} tail is added (this tail is used to compute non-linear wave-wave interactions at the high frequencies and to compute integral wave parameters). The reason for using a fixed high-frequency cut-off rather than a dynamic cut-off frequency that depends on the wind speed or on the mean frequency, as in the WAM and WAVEWATCH III model, is that in coastal regions mixed sea states with rather different characteristic frequencies may occur. For instance, a local wind may generate a very young sea behind an island, totally unrelated to (but superimposed on) a simultaneously occurring swell. In such cases a dynamic cut-off frequency may be too low to properly account for the locally generated sea state. Based on physical arguments the value of m (the power in the above expression of the spectral tail) should be between 4 and 5 (Phillips, 1985). In SWAN m = 4 if the wind input formulation of Komen *et al.* (1984) is used (cf. WAM Cycle 3) and m = 5 if the wind input formulation of Janssen (1991a) is used (cf. WAM Cycle 4).

6.5.1 Propagation

The numerical schemes in SWAN have been chosen on the basis of robustness, accuracy and economy. Since the nature of the basic equation is such that the state in a grid point is determined by the state in the up-wave grid points, the most robust scheme would be an implicit upwind scheme (in both geographic and spectral space). The adjective "implicit" is used here to indicate that all derivatives of action density (x or y) are formulated at one computational level, i_x or i_y , except the derivative in the integration dimension for which also the previous or up-wave level is used (x or y in stationary mode). For such a scheme the values of space steps, Δx and Δy would be mutually independent. An implicit scheme would also be economical in the sense that such a scheme is unconditionally stable. It permits relatively large time steps in the computations (much larger than for explicit schemes in shallow water). Several years of experience in using the second-generation HISWA shallow water wave model (Holthuijsen et al., 1989) has shown that for coastal regions a first-order upwind difference scheme in geographic space is usually accurate enough. This experience, together with test computations with SWAN has also shown that in spectral space a higher accuracy than that of a first-order upwind scheme is required. This can be achieved by supplementing such a scheme with a second-order central approximation (more economic than a second-order upwind scheme). For SWAN therefore, implicit upwind schemes in both geographic and spectral space have been chosen, supplemented with a central approximation in spectral space.

The fact that in geographic space, the state in a grid point is determined by the state in the upwave grid points (as defined by the direction of propagation), permits a decomposition of the spectral space into four quadrants. In each of the quadrants the computations can be carried out independently from the other quadrants except for the interactions between them due to refraction and non-linear wave-wave interactions (formulated in corresponding boundary conditions between the quadrants). The wave components in SWAN are correspondingly propagated in geographic space with the first-order upwind scheme in a sequence of four forward-marching sweeps (one per quadrant). To properly account for the boundary conditions between the four quadrants, the computations are carried out iteratively at each time step. The discretization of the action balance equation is (for positive propagation speeds; including the computation of the source terms but ignoring their discretisation):

$$\begin{bmatrix} \frac{[c_x N]_{i_x} - [c_x N]_{i_x-1}}{\Delta x} \end{bmatrix}_{i_y, i_\sigma, i_\theta}^n + \begin{bmatrix} \frac{[c_y N]_{i_y} - [c_y N]_{i_y-1}}{\Delta y} \end{bmatrix}_{i_x, i_\sigma, i_\theta}^n \\ + \begin{bmatrix} \frac{(1-\nu)[c_\sigma N]_{i_\sigma+1} + 2\nu[c_\sigma N]_{i_\sigma} - (1+\nu)[c_\sigma N]_{i_\sigma-1}}{2\Delta\sigma} \end{bmatrix}_{i_x, i_y, i_\theta}^n \\ + \begin{bmatrix} \frac{(1-\eta)[c_\theta N]_{i_\theta+1} + 2\eta[c_\theta N]_{i_\theta} - (1+\eta)[c_\theta N]_{i_\theta-1}}{2\Delta\theta} \end{bmatrix}_{i_x, i_y, i_\sigma}^n = \begin{bmatrix} \frac{S}{\sigma} \end{bmatrix}_{i_x, i_y, i_\sigma, i_\theta}^{n^*}$$
(6.50)

where i_x , i_y , i_σ and i_θ are grid counters and Δx , Δy , $\Delta \sigma$ and $\Delta \theta$ are the increments in geographic space and spectral space respectively. The iterative nature of the computation is indicated with the iteration index n (the iteration index for the source terms n^* is equal to n or n - 1, depending on the source term, see below). Because of these iterations, the scheme is also approximately implicit for the source terms. For negative propagation speeds, appropriate + and - signs are required in Eq. 6.50.

The coefficients ν and η determine the degree to which the scheme in spectral space is upwind or central. They thus control the numerical diffusion in frequency and directional space, respectively. A value of $\nu = 0$ or $\eta = 0$ corresponds to central schemes which have the largest accuracy (numerical diffusion $\gg 0$). Value of $\nu = 1$ or $\eta = 1$ correspond to upwind schemes which are somewhat more diffusive and therefore less accurate but more robust. If large gradients of the action density in frequency space or directional space are present, numerical oscillations can arise (especially with the central difference schemes) resulting in negative values of the action density. In each sweep such negative values are removed from the two-dimensional spectrum by setting these values equal to zero and re-scaling the remaining positive values such that the frequency-integrated action density per spectral direction is conserved. The depth derivatives and current derivatives in the expressions of c_{σ} and c_{θ} are calculated with a first-order upwind scheme. For very strong refraction the value of c_{θ} is reduced in each grid point and for each wave component individually with the square of the fraction of the grid spacing over which kd < 3.0.

The propagation scheme is implicit as the derivatives of action density (in x or y) at the computational level (i_x or i_y , respectively) are formulated at that level except in the integration dimension (x or y; depending on the direction of propagation) where also the up-wave level is used. The values of Δx and Δy are therefore still mutually independent.

The boundary conditions in SWAN, both in geographic space and spectral space are fully absorbing for wave energy that is leaving the computational domain or crossing a coast line. The incoming wave energy along open geographic boundaries needs to be prescribed by you. For coastal regions such incoming energy is usually provided only along the deepwater boundary and not along the lateral geographic boundaries (i.e., the spectral densities are assumed to be zero). This implies that such erroneous lateral boundary conditions are propagated into the computational area. The affected areas are typically triangular regions with the apex at the corners between the deep-water boundary and the lateral boundaries, spreading towards shore at an angle of 30° to 45° (for wind sea conditions) on either side of the deep-water mean wave direction (less for swell conditions; this angle is essentially equal to the one-sided width of the directional distribution of the incoming wave spectrum). For this reason the lateral boundaries should be sufficiently far away from the area of interest to avoid the propagation of this error into the area.

References

- Abreu, M., A. Larraza and E. Thornton, 1992. "Nonlinear transformation of directional wave spectra in shallow water." *Journal of Geophysical Research* 97: 15579–15589.
- Alves, J. and M. Banner, 2003. "Performance of a saturation-based dissipation-rate source term in modelling the fetch-limited evolution of wind waves." J. Phys. Oceanogr. 33: 1274– 1298.
- Arcilla, A. and C. Lemos, 1990. *Surf-Zone Hydrodynamics*. Centro Internacional de Métodos Numéricos en Ingenieria, Barcelona.
- Arcilla, A., B. Roelvink, B. O'Connor, A. Reniers and J. Jimenez, 1994. "The Delta flume '93 experiment." In *Proceedings Coastal Dynamics Conference '94*, pages 488–502.
- Battjes, J. and S. Beji, 1992. "Breaking waves propagating over a shoal." In *Proceedings 23rd International Conference Coastal Engineering, ASCE*, pages 42–50.
- Battjes, J. and J. Janssen, 1978. "Energy loss and set-up due to breaking of random waves,." In *Proceedings 16th International Conference Coastal Engineering, ASCE*, pages 569–587.
- Battjes, J. and M. Stive, 1985. "Calibration and verification of a dissipation model for random breaking waves." *Journal of Geophysical Research* 90 (C5): 9159–9167.
- Beji, S. and J. Battjes, 1993. "Experimental investigation of wave propagation over a bar." *Coastal Engineering* 19: 151–162.
- Bertotti, L. and L. Cavaleri, 1994. "Accuracy of wind and wave evaluation in coastal regions." In *Proceedings 24th International Conference Coastal Engineering, ASCE*, pages 57–67.
- Booij, N., L. H. Holthuijsen and P. H. M. de Lange, 1992. "The penetration of short-crested waves through a gap." In *Proceedings 23rd International Conference Coastal Engineering, Venice 4-9 Oct., 1992, New York, 1993*, pages 1044–1052.
- Booij, N., R. Ris and L. Holthuijsen, 1999. "A third-generation wave model for coastal regions, Part I, Model description and validation." *Journal of Geophysical Research* 104 (C4): 7649– 7666.
- Bouws, E. and G. Komen, 1983. "On the balance between growth and dissipation in an extreme, depth-limited wind-sea in the southern North Sea." *Journal of Physical Oceanog-raphy* 13: 1653–1658.
- Cavaleri, L. and P. Malanotte-Rizzoli, 1981. "Wind wave prediction in shallow water: Theory and applications." *Journal of Geophysical Research* 86 (C11): 10961–10973.
- Chen, Y. and R. Guza, 1997. "Modelling of breaking surface waves in shallow water." *Journal of Geophysical Research* 102 (C11): 25035–25046.
- Collins, J., 1972. "Prediction of shallow water spectra." *Journal of Geophysical Research* 77 (15): 2693–2707.
- Deltares, 2024a. *D-Flow FM Hydro- and Morphodynamics User Manual*. Deltares, 1.1.124 ed.
- Deltares, 2024b. Delft3D-FLOW User Manual. Deltares, 3.14 ed.

Deltares, 2024c. Delft3D-FM User Manual. Deltares, 1.0.40843 ed.

Dingemans, M. W., 1997. *Water Wave Propagation over Uneven Bottoms, Vol. 1 and 2.* Advanced Series on Ocean Engineering, Vol. 13. World Scientific, London.

- Dingemans, M. W., A. C. Radder and H. J. de Vriend, 1987. "Computation of the driving forces of wave-induced currents." *Coastal Engineering* 11: 539–563.
- Eldeberky, Y. and J. Battjes, 1995. "Parameterization of triad interactions in wave energy models, Gdansk, Poland." In *Proceedings Coastal Dynamics Conference '95*, pages 140–148.
- Eldeberky, Y. and J. A. Battjes, 1996. "Spectral modelling of wave breaking: Application to Boussinesq equations." *Journal of Geophysical Research* 101 (C1): 1253–1264.
- Elgar, S., R. Guza, B. Raubenheimer, T. Herbers and E. Gallagher, 1997. "Spectral evolution of shoaling and breaking waves on a barred beach." *Journal of Geophysical Research* 102 (C7): 15797–15805.
- Galvin, C., 1972. "Waves on beaches and resulting sediment transport." In *Wave breaking in shallow water*, pages 413–455. Academic Press Inc.
- Goda, Y., H. Takeda and Y. Moriya, 1967. *Laboratory investigation of wave transmission over breakwaters*. Tech. Rep. 13, Rep. port and Harbour Res. Institution. (from Seelig, 1979).
- Günther, H., S. Hasselmann and P. A. E. M. Janssen, 1992. *The WAM model Cycle 4 (revised version)*. Tech. Rep. 4, Deutsch. Klim. Rechenzentrum, Hamburg, Germany.
- Hasselmann, K., 1974. "On the spectral dissipation of ocean waves due to whitecapping." *Boundary-Layer Meteorology* 6 (1-2): 107–127.
- Hasselmann, K., T. P. Barnett, E. Bouws, H. Carlson, D. E. Cartwright, K. Enke, J. Ewing, H. Gienapp, D. E. Hasselmann, P. Kruseman, A. Meerburg, P. Müller, D. J. Olbers, K. Richter, W. Sell and H. Walden, 1973. "Measurements of wind wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP)." *Deutsche Hydrographische Zeitschrift* 8 (12).
- Hasselmann, K. and J. Collins, 1968. "Spectral dissipation of finite-depth gravity waves due to turbulent bottom friction." *Journal of Marine Research* 26: 1–12.
- Hasselmann, S. and K. Hasselmann, 1981. "A symmetrical method of computing the nonlinear transfer in a gravity-wave spectrum." *Hamburger Geophysikalische Einzelschriften* 52 (8): 138p. Serie A.
- Hasselmann, S., K. Hasselmann, J. Allender and T. Barnett, 1985. "Computations and parameterizations of the nonlinear energy transfer in a gravity wave spectrum. Part II: Parameterizations of the nonlinear transfer for application in wave models." *Journal of Physical Oceanography* 15 (11): 1378–1391.
- Holthuijsen, L., N. Booij and T. Herbers, 1989. "A prediction model for stationary, short-crested waves in shallow water with ambient currents." *Coastal Engineering* 13: 23–54.
- Holthuijsen, L., N. Booij and R. Ris, 1993. "A spectral wave model for the coastal zone." In *Proceedings of 2nd International Symposium on Ocean Wave Measurement and Analysis, New Orleans*, pages 630–641.
- Janssen, P., 1991a. "Quasi-linear theory of wind-wave generation applied to wave forecasting." *Journal of Physical Oceanography* 21: 1631–1642.
- Janssen, P. A. E. M., 1991b. Consequences of the effect of surface gravity waves on the mean air flow. Tech. rep., International Union of Theor. and Appl. Mech. (IUTAM), Sydney, Australia. 193-198.

- Jonsson, I., 1966. "Wave boundary layers and friction factors." In *Proceedings 10th International Conference Coastal Engineering, ASCE*, pages 127–148.
- Jonsson, I. and N. Carlsen, 1976. "Experimental and theoretical investigations in an oscillatory turbulent boundary layer." *Journal of Hydraulic Research* 14: 45–60.
- Jonsson, I. G., 1980. "A new approach to rough turbulent boundary layers." *Ocean Engineer-ing* 7: 109–152.
- Kaminsky, G. and N. Kraus, 1993. "Evaluation of depth-limited wave breaking criteria." In Proceedings of 2nd International Symposium on Ocean Wave Measurement and Analysis, pages 180–193. New Orleans.

Komen, G., L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann and P. Janssen, 1994. *Dynamics and Modelling of Ocean Waves*. Camebridge University Press.

Komen, G., S. Hasselmann and K. Hasselmann, 1984. "On the existence of a fully developed wind-sea spectrum." *Journal of Physical Oceanography* 14: 1271–1285.

- Kuik, A., G. van Vledder and L. Holthuijsen, 1988. "A method for the routine analysis of pitch-and-roll buoy wave data." *Journal of Physical Oceanography* 18: 1020–1034.
- Luo, W. and J. Monbaliu, 1994. "Effects of the bottom friction formulation on the energy balance for gravity waves in shallow water." *Journal of Geophysical Research* 99 (C9): 18501–18511.
- Madsen, O., Y.-K. Poon and H. Graber, 1988. "Spectral wave attenuation by bottom friction: Theory." In *Proceedings 21th International Conference Coastal Engineering, ASCE*, pages 492–504.
- Madsen, P. and O. Sørensen, 1993. "Bound waves and triad interactions in shallow water." *Ocean Engineering* 20 (4): 359–388.
- Mase, H. and J. Kirby, 1992. "Hybrid frequency-domain KdV equation for random wave transformation." In *Proceedings 23th International Conference Coastal Engineering, ASCE*, pages 474–487.

Mastenbroek, C., G. Burger and P. Janssen, 1993. "The dynamical coupling of a wave model in a storm surge model through the atmospheric boundary layer." *Journal of Physical Oceanography* 23: 1856–1866.

- Mei, C., 1983. The applied dynamics of ocean surface waves. Wiley, New York.
- Miles, J., 1957. "On the generation of surface waves by shear flows." *Journal of Fluid Me-chanics* 3: 185–204.
- Nelson, R., 1987. "Design wave heights on very mild slopes: An experimental study." *Transactions of the Institution of Engineers, Australia, Civil Engineering* 29: 157–161.
- Nelson, R. C., 1994. "Depth limited wave heights in very flat regions." *Coastal Engineering* 23: 43–59.
- Phillips, N. A., 1957. "A co-ordinate system having some special advantages for numerical forecasting." *Journal of Meteorology* 14: 184–185.
- Phillips, O., 1985. "Spectral and statistical properties of the equilibrium range in windgenerated gravity waves." *Journal of Fluid Mechanics* 156: 505–531.
- Putnam, J. and J. Johnson, 1949. "The dissipation of wave energy by bottom friction." *Transactions American Geophysical Union* 30: 67–74.

- Ris, R., N. Booij and L. Holthuijsen, 1999. "A third-generation wave model for coastal regions, Part II: Verification." *Journal of Geophysical Research* 104 (C4): 7649–7666.
- Seelig, W., 1979. "Effects of breakwaters on waves: laboratory tests of wave transmission by overtopping." In *Proceedings Conference Coastal Structures*, vol. 79:2, pages 941–961.
- Shemdin, P., K. Hasselmann, S. Hsiao and K. Herterich, 1978. "Non linear and linear bottom interaction effects in shallow water." In *Turbulent Fluxes through the Sea Surface Wave Dynamics and Prediction, NATO Conference Series*, no. 1 in V, pages 347–372.
- Snyder, R., F. Dobson, J. Elliot and R. Long, 1981. "Array measurement of atmospheric pressure fluctuations above surface gravity waves." *Journal of Fluid Mechanics* 102: 1–59.
- SWAN UM, 2000. *SWAN Cycle III version 41.31 User Manual (not the short version)*. Delft University of Technology, Delft, The Netherlands, 0.00 ed.
- Thornton, E. and R. Guza, 1983. "Transformation of wave height distribution." *Journal of Geophysical Research* 88 (C10): 5925–5938.
- Tolman, H., 1990. *Wind wave propagation in tidal seas*. Ph.D. thesis, Delft University of Technology, Department of Civil Engineering, The Netherlands.
- Tolman, H. L., 1992a. "Effects of numerics on the physics in a third-generation windwave model." *Journal of Physical Oceanography* 22: 1095–1111.
- Tolman, H. L., 1992b. "An evaluation of expressions for the wave energy dissipation due to bottom friction in the presence of currents." *Coastal Engineering* 16: 165–179.
- Vincent, C., J. Smith and J. Davis, 1994. "Parameterization of wave breaking in models." In M. Isaacson and M. Quick, eds., *Proceedings of International Symp.: Waves - Physical and Numerical Modelling*, vol. II, pages 753–762. University of British Columbia, Vancouver, Canada.
- WAMDI group, 1988. "The WAM model a third generation ocean wave prediction model." *Journal of Physical Oceanography* 18: 1775–1810.
- Weber, S., 1989. *Surface gravity waves and turbulent bottom friction*. Ph.D. thesis, University of Utrecht, The Netherlands.
- Weber, S. L., 1991a. "Bottom friction for wind sea and swell in extreme depth-limited situations." *Journal of Physical Oceanography* 21: 149–172.
- Weber, S. L., 1991b. "Eddy-viscosity and drag-law models for random ocean wave dissipation." *Journal of Fluid Mechanics* 232: 73–98.
- Westhuysen, A. J. Van der, 2007. *Advances in the spectral modelling of wind waves in the nearshore*. Ph.D. thesis, Delft University of Technology. Fac. of Civil Engineering.
- Westhuysen, A. Van der, M. Zijlema and J. Battjes, 2007. *Nonlinear saturation-based white-capping dissipation in SWAN for deep and shallow water*. Ph.D. thesis, Delft University of Technology.
- Whitham, G., 1974. Linear and nonlinear waves. Wiley, New York.
- WL | Delft Hydraulics, 1999. *Modification first-guess SWAN and bench mark tests for SWAN*. Tech. Rep. H3515, WL | Delft Hydraulics, Delft, The Netherlands, Delft.
- WL | Delft Hydraulics, 2000. *Physical formulations SWAN and data for validation*. Tech. Rep. H3528, WL | Delft Hydraulics, Delft, The Netherlands, Delft.

- Wu, J., 1982. "Wind-stress coefficients over sea surface from breeze to hurricane." *Journal of Geophysical Research* 87 (C12): 9704–9706.
- Young, I. R. and G. van Vledder, 1993. "A review of the central role of nonlinear interactions in wind-wave." *Philosophical transaction of the Royal Society London A* 342: 505–524.

A Files of D-Waves

A.1 MDW-file

A.1.1 General description

File contents	The Master Definition WAVE file (MDW-file) is the input file for the wave simulation program.
Filetype	ASCII
File format	Free formatted
Filename	<name.mdw></name.mdw>
Generated	WAVE-GUI or manually offline

The Master Definition WAVE file (MDW-file) is the input file for the wave simulation program. It contains all the necessary data required for defining a model and running the simulation program. In the MDW-file you can define attribute files in which relevant data (for some parameters) are stored. This is especially useful when parameters contain a large number of data (e.g. time-dependent or space varying data). The user-definable attribute files are listed and described in Appendix A.

The MDW-file has the following general characteristics:

- ♦ Each line contains a maximum of 300 characters.
- Each set of input parameter(s) is preceded by a chapter name enclosed in square brackets (e.g. [WaveFileInformation]).
- ♦ Each input parameter is preceded by a Keyword.
- A Keyword is a combination of numerical and alpha-numerical characters, but starting with an alpha-numeric character, followed by an equal sign "=".

The MDW-file is an intermediate file between the WAVE-GUI and the WAVE simulation program. As it is an ASCII-file, it can be transported to an arbitrary hardware platform. Consequently, the WAVE simulation program and the WAVE-GUI do not necessarily have to reside on the same hardware platform.

Generally, you need not to bother about the internal layout or content of the MDW-file. It is, however, sometimes useful to be able to inspect the file and/or make small changes manually. Therefore the MDW-file is an ordinary ASCII-file which you can inspect and change with your favourite ASCII-editor.

The MDW-file is self contained, i.e. it contains all the necessary information about the model concerned. It can therefore be used as model archive by storing/printing the file.

Here we list all the possible chapters and keywords of the MDW-file:

Record description:

Keyword	Format	Description				
WaveFileInformation	VaveFileInformation					
FileVersion	string	should be 02.00				
General	General					
		continued on next page				

* May be specified multiple times

+ Not supported by WAVE-GUI

R = Real; I = Integer; L = Logical; C = Character

Keyword Format Description C*16 ProjectName project name ProjectNr C*4 project number Description* C*72 description line OnlyInputVerify 1 L switch for input validation or simulation run: false = simulation run, or true = input validation only SimMode key-value simulation mode: stationary, quasi-stationary, non-stationary TimeStep 1 R time step (minutes) in case of non-stationary simulation, i.e. time between the computation of wave fields 1 R TimeInterval time interval (minutes) in case of non-stationary simulation, i.e. length of one SWAN instance in which the wave field is calculated at every TimeStep TScale⁺ 1 R. optional unit of time, default is 60.0) FlowFile+ name of mdf-file containing FLOW input. If FlowFile is empty, FLOW is not running online. If FlowFile is string non-empty, FLOW is running online name of mdf-file containing FLOW input for the mud phase of a two phased FLOW model. If FlowMudFile is empty, MUD is not running online. If FlowMudFile is non-empty, MUD is running online. FlowMudFile+ string default usage of bed level from hydrodynamic computation by all domains: 0 = "don't use", 1 = "use but don't extend", 2 = "use and extend" if necessary. May be overruled by same keyword in group "domain". Not relevant when FlowFile is empty; default: 0 FlowBedLevel 11 FlowWaterLevel 11 See description of FlowBedLevel above. FlowVelocity 11 See description of FlowBedLevel above. FlowVelocityType key-value method of velocity computation (depth-averaged, surface-layer, wave-dependent; default: depth-averaged) FlowWind 11 See description of FlowBedLevel above. DirConvention direction specification convention: nautical, cartesian key-value ReferenceDate C*10 reference date (string format: YYYY-MM-DD) ObstacleFile string name of file containing obstacles TSeriesFile string name of file containing time-dependent quantities TimePntBlock 1 I, optional number of table in TSeriesFile containing time points; only if TSeriesFile has been specified MeteoFile*+ characters Name of file containing meteo input 1 R, optional DirSpace default directional space: circle, sector NDir 1 R, optional default number of directional bins 1 R, optional StartDir default start direction in case of sector directional space EndDir 1 R, optional default end direction in case of sector directional space NFreq 1 R, optional default number of frequencies FreqMin 1 R, optional default minimum frequency 1 R, optional FreqMax default maximum frequency 1 R WaterLevel default water leve XVeloc 1 R default velocity in x-direction YVeloc 1 R default velocity in y-direction 1 R WindSpeed default wind speed 1 R WindDir default wind direction NDec 1 I, optional number of decimals in SWAN output, see SWAN manual. Default: 8 INPUTTemplateFile path to pre-existing SWAN INPUT file C, optional TimePoint* TimePoint should be specified if TimePntBlock is not included and not Online with FLOW. Time 1 R time in minutes since refdate 0:00 hours WaterLevel 1 R water level at specified time poin XVeloc 1 R velocity in x direction at specified time point 1 R velocity in y direction at specified time point YVeloc 1 R wind speed at specified time point WindSpeed WindDir 1 R wind direction at specified time point Constants WaterLevelCorrection R Overall water level correction continued on next page

continued from previous page

* May be specified multiple times

+ Not supported by WAVE-GUI

R = Real; I = Integer; L = Logical; C = Character

continued from previous page

Keyword		
	Format	Description
Gravity	1 R	gravitational acceleration (default: 9.81 m/s ²)
WaterDensity	1 R	density of water (default: 1025 kg/m ³)
NorthDir	1 R	direction of north relative to x axis (default: 90°)
MinimumDepth	1 R	minimum water depth below which points are excluded from the computation (default: 0.05 m)
Processes	1	
GenModePhys	11	generation mode of physics: 1 for first-generation, 2 for second-generation, 3 for third-generation
WaveSetup	1 L	include wave setup (default: false)
Breaking	1 L	include wave breaking (default: true)
BreakAlpha	1 R	alpha coefficient for wave breaking (default: 1.0)
BreakGamma	1 R	gamma coefficient for wave breaking (default: 0.73)
Triads	1 L	include triads (default: false)
TriadsAlpha	1 R	alpha coefficient for triads (default: 0.1)
TriadsBeta	1 R	beta coefficient for triads (default: 2.2)
BedFriction	string	bed friction type (none, jonswap, collins, madsen et al., default: jonswap)
BedFricCoef	1 R	bed friction coefficient (default: 0.067 for jonswap, 0.015 for collins, 0.05 for madsen et al.)
Diffraction	1L	include diffraction (default: true)
DiffracCoef	18	diffraction coefficient (default: 0.2)
DiffracSteps	11	number of diffraction smoothing steps (default: 5)
DiffracProp	1L	include adaption of propagation velocities due to diffraction (default: true)
WindGrowth	1L	include adaption of propagation velocities due to dimaction (detault, inde)
WhiteCapping	key-value	white capping: (Off, Komen, Westhuysen, default: Komen)
Quadruplets	1L	include quadruplets (default: false)
Refraction	1L	include refraction (default: true)
FreqShift	1L	include frequency shifting in frequency space (default: true)
WaveForces	key-value	method of wave force computation (dissipation 3d, dissipation, radiation stresses <2013; default: dissipation 3d
Numerics		
Numerics DirSpaceCDD	1 R	discretisation in directional space: 0 for central, 1 for upwind (default: 0.5)
	1 R 1 R	discretisation in directional space: 0 for central, 1 for upwind (default: 0.5) discretisation in frequency space: 0 for central, 1 for upwind (default: 0.5)
DirSpaceCDD		
DirSpaceCDD FreqSpaceCSS	1 R	discretisation in frequency space: 0 for central, 1 for upwind (default: 0.5)
DirSpaceCDD FreqSpaceCSS RChHsTm01	1 R 1 R	discretisation in frequency space: 0 for central, 1 for upwind (default: 0.5) relative change of wave height or mean wave period with respect to local value (default: 0.02)
DirSpaceCDD FreqSpaceCSS RChHsTm01 RChMeanHs	1 R 1 R 1 R	discretisation in frequency space: 0 for central, 1 for upwind (default: 0.5) relative change of wave height or mean wave period with respect to local value (default: 0.02) relative change of wave height with respect to model-wide average wave height (default: 0.02)
DirSpaceCDD FreqSpaceCSS RChHsTm01 RChMeanHs RChMeanTm01	1 R 1 R 1 R 1 R	discretisation in frequency space: 0 for central, 1 for upwind (default: 0.5) relative change of wave height or mean wave period with respect to local value (default: 0.02) relative change of wave height with respect to model-wide average wave height (default: 0.02) relative change of mean wave period with respect to model-wide average mean wave period (default: 0.02)
DirSpaceCDD FreqSpaceCSS RChHsTm01 RChMeanHs RChMeanTm01 PercWet	1 R 1 R 1 R 1 R 1 R	discretisation in frequency space: 0 for central, 1 for upwind (default: 0.5) relative change of wave height or mean wave period with respect to local value (default: 0.02) relative change of wave height with respect to model-wide average wave height (default: 0.02) relative change of mean wave period with respect to model-wide average mean wave period (default: 0.02) percentage of points included in simulation at which convergence criteria must be satisfied (default: 98%)
DirSpaceCDD FreqSpaceCSS RChHsTm01 RChMeanHs RChMeanTm01 PercWet MaxIter	1 R 1 R 1 R 1 R 1 R	discretisation in frequency space: 0 for central, 1 for upwind (default: 0.5) relative change of wave height or mean wave period with respect to local value (default: 0.02) relative change of wave height with respect to model-wide average wave height (default: 0.02) relative change of mean wave period with respect to model-wide average mean wave period (default: 0.02) percentage of points included in simulation at which convergence criteria must be satisfied (default: 98%)
DirSpaceCDD FreqSpaceCSS RChHsTm01 RChMeanHs RChMeanTm01 PercWet MaxIter Output	1 R 1 R 1 R 1 R 1 R 1 R 1 I	discretisation in frequency space: 0 for central, 1 for upwind (default: 0.5) relative change of wave height or mean wave period with respect to local value (default: 0.02) relative change of wave height with respect to model-wide average wave height (default: 0.02) relative change of mean wave period with respect to model-wide average mean wave period (default: 0.02) percentage of points included in simulation at which convergence criteria must be satisfied (default: 98%) maximum number of iterations for convergence (default: 15)
DirSpaceCDD FreqSpaceCSS RChHsTm01 RChMeanHs RChMeanTm01 PercWet MaxIter Output TestOutputLevel	1 R 1 R 1 R 1 R 1 R 1 I 1 I	discretisation in frequency space: 0 for central, 1 for upwind (default: 0.5) relative change of wave height or mean wave period with respect to local value (default: 0.02) relative change of wave height with respect to model-wide average wave height (default: 0.02) relative change of mean wave period with respect to model-wide average mean wave period (default: 0.02) percentage of points included in simulation at which convergence criteria must be satisfied (default: 98%) maximum number of iterations for convergence (default: 15) test output level (default: 0)
DirSpaceCDD FreqSpaceCSS RChHsTm01 RChMeanHs RChMeanTm01 PercWet MaxIter Output TestOutputLevel TraceCalls	1 R 1 R 1 R 1 R 1 R 1 R 1 I 1 I 1 I	discretisation in frequency space: 0 for central, 1 for upwind (default: 0.5) relative change of wave height or mean wave period with respect to local value (default: 0.02) relative change of wave height with respect to model-wide average wave height (default: 0.02) relative change of mean wave period with respect to model-wide average mean wave period (default: 0.02) relative change of mean wave period with respect to model-wide average mean wave period (default: 0.02) percentage of points included in simulation at which convergence criteria must be satisfied (default: 98%) maximum number of iterations for convergence (default: 15) test output level (default: 0) trace subroutine calls (default: false)
DirSpaceCDD FreqSpaceCSS RChHsTm01 RChMeanHs RChMeanTm01 PercWet MaxIter Output TestOutputLevel TraceCalls UseHotFile	1 R 1 R 1 R 1 R 1 R 1 R 1 I 1 I 1 L 1 L	discretisation in frequency space: 0 for central, 1 for upwind (default: 0.5) relative change of wave height or mean wave period with respect to local value (default: 0.02) relative change of wave height with respect to model-wide average wave height (default: 0.02) relative change of mean wave period with respect to model-wide average mean wave period (default: 0.02) percentage of points included in simulation at which convergence criteria must be satisfied (default: 98%) maximum number of iterations for convergence (default: 15) test output level (default: 0) trace subroutine calls (default: false) write and read hotstart files (default: false)
DirSpaceCDD FreqSpaceCSS RChHsTm01 RChMeanHs RChMeanTm01 PercWet MaxIter Output TestOutputLevel TraceCalls UseHotFile MapWriteInterval	1 R 1 R 1 R 1 R 1 R 1 I 1 I 1 L 1 L 1 R	discretisation in frequency space: 0 for central, 1 for upwind (default: 0.5) relative change of wave height or mean wave period with respect to local value (default: 0.02) relative change of wave height with respect to model-wide average wave height (default: 0.02) relative change of mean wave period with respect to model-wide average mean wave period (default: 0.02) relative change of points included in simulation at which convergence criteria must be satisfied (default: 98%) maximum number of iterations for convergence (default: 15) test output level (default: 0) trace subroutine calls (default: false) write and read hotstart files (default: false) interval for writing data to map file(s) in minutes
DirSpaceCDD FreqSpaceCSS RChHsTm01 RChMeanHs RChMeanTm01 PercWet MaxIter Output TestOutputLevel TraceCalls UseHotFile MapWriteInterval WriteCOM	1 R 1 R 1 R 1 R 1 I 1 I 1 L 1 R 1 L 1 R 1 L 1 L	discretisation in frequency space: 0 for central, 1 for upwind (default: 0.5) relative change of wave height or mean wave period with respect to local value (default: 0.02) relative change of wave height with respect to model-wide average wave height (default: 0.02) relative change of mean wave period with respect to model-wide average mean wave period (default: 0.02) relative change of mean wave period with respect to model-wide average mean wave period (default: 0.02) percentage of points included in simulation at which convergence criteria must be satisfied (default: 98%) maximum number of iterations for convergence (default: 15) test output level (default: 0) trace subroutine calls (default: false) write and read hotstart files (default: false) interval for writing data to map file(s) in minutes write results to communication file(s) (default: false)
DirSpaceCDD FreqSpaceCSS RChHsTm01 RChMeanHs RChMeanTm01 PercWet MaxIter Output TestOutputLevel TraceCalls UseHotFile MapWriteInterval WriteCOM	1 R 1 R 1 R 1 R 1 I 1 I 1 L 1 R 1 L 1 R 1 L 1 R	discretisation in frequency space: 0 for central, 1 for upwind (default: 0.5) relative change of wave height or mean wave period with respect to local value (default: 0.02) relative change of wave height with respect to model-wide average wave height (default: 0.02) relative change of mean wave period with respect to model-wide average mean wave period (default: 0.02) relative change of points included in simulation at which convergence criteria must be satisfied (default: 98%) maximum number of iterations for convergence (default: 15) test output level (default: 0) trace subroutine calls (default: false) write and read hotstart files (default: false) interval for writing data to map file(s) in minutes write results to communication file(s) (default: false) interval for writing data to communication file(s) in minutes upon writing to communication file(s) overwrite the previous data (false) or append to the data series (true) (default
DirSpaceCDD FreqSpaceCSS RChHsTm01 RChMeanHs RChMeanTm01 PercWet MaxIter Dutput TestOutputLevel TraceCalls UseHotFile MapWriteInterval WriteCOM COMWriteInterval	1 R 1 R 1 R 1 R 1 I 1 I 1 L 1 R 1 L 1 R 1 L 1 R 1 L 1 R 1 L	discretisation in frequency space: 0 for central, 1 for upwind (default: 0.5) relative change of wave height or mean wave period with respect to local value (default: 0.02) relative change of wave height with respect to model-wide average wave height (default: 0.02) relative change of mean wave period with respect to model-wide average mean wave period (default: 0.02) relative change of points included in simulation at which convergence criteria must be satisfied (default: 98%) maximum number of iterations for convergence (default: 15) test output level (default: 0) trace subroutine calls (default: false) write and read hotstart files (default: false) interval for writing data to map file(s) in minutes write results to communication file(s) (default: false) interval for writing data to communication file(s) in minutes upon writing to communication file(s) overwrite the previous data (false) or append to the data series (true) (defaultalse)
DirSpaceCDD FreqSpaceCSS RChHsTm01 RChMeanHs RChMeanTm01 PercWet MaxIter Output TestOutputLevel TraceCalls UseHotFile MapWriteInterval WriteCOM COMWriteInterval AppendCOM	1 R 1 R 1 R 1 R 1 R 1 R 1 I 1 I 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L	discretisation in frequency space: 0 for central, 1 for upwind (default: 0.5) relative change of wave height or mean wave period with respect to local value (default: 0.02) relative change of wave height with respect to model-wide average wave height (default: 0.02) relative change of mean wave period with respect to model-wide average mean wave period (default: 0.02) percentage of points included in simulation at which convergence criteria must be satisfied (default: 98%) maximum number of iterations for convergence (default: 15) test output level (default: 0) trace subroutine calls (default: false) write and read hotstart files (default: false) interval for writing data to map file(s) in minutes write results to communication file(s) in minutes urite results to communication file(s) in minutes upon writing to communication file(s) overwrite the previous data (false) or append to the data series (true) (default false) write mass fluxes due to wave to communication file(s) (default: true)

* May be specified multiple times + Not supported by WAVE-GUI R = Real; I = Integer; L = Logical; C = Character

Keyword	Format	Description
WriteSpec1D	1 L	write 1D spectra for output locations (default: false)
WriteSpec2D	1 L	write 2D spectra for output locations (default: false)
KeepINPUT	1L	keep a copy of the Swan INPUT file(s) (default: false)
Domain*		
Grid	string	file name of computational grid
BedLevelGrid	string	file name of bed level grid (default: equal to computational grid)
BedLevel	string	file name of bed level data
DirSpace	1 R	directional space: circle, sector
NDir	1 R	number of directional bins
StartDir	1 R	start direction in case of sector directional space
EndDir	1 R	end direction in case of sector directional space
NFreq	1 R	number of frequencies
FreqMin	1 R	minimum frequency
FreqMax	1 R	maximum frequency
NestedInDomain	1 R	number of domain in which current domain is nested (required for domains 2 and following)
FlowBedLevel		See description of FlowBedLevel in group [General]
FlowWaterLevel		See description of FlowBedLevel in group [General]
FlowVelocity		See description of FlowBedLevel in group [General]
FlowVelocityType		See description of FlowBedLevel in group [General]
FlowWind		See description of FlowBedLevel in group [General]
MeteoFile*		Name of file containing meteo input
Output	1 L	write map file for current domain (default: true)
Boundary*		
Name	string	boundary name
Definition	key-value	definition type (orientation, grid-coordinates, xy-coordinates)
Orientation	key-value	boundary orientation in case of boundary definition by means of orientation (north, northwest, west southwest, south, southeast, east, northeast)
DistanceDir	key-value	direction of distance measurements for boundary segments in case of boundary definition by means of orientation (clockwise, counter-clockwise; default: counter-clockwise)
StartCoordM	11	start m-coordinate of boundary in case of boundary definition by means of grid-coordinates
EndCoordM	11	end m-coordinate of boundary in case of boundary definition by means of grid-coordinates
StartCoordN	11	start n-coordinate of boundary in case of boundary definition by means of grid-coordinates
EndCoordN	11	end n-coordinate of boundary in case of boundary definition by means of grid-coordinates
StartCoordX	1 R	start x-coordinate of boundary in case of boundary definition by means of xy-coordinates
EndCoordX	1 R	end x-coordinate of boundary in case of boundary definition by means of xy-coordinates
StartCoordY	1 R	start y-coordinate of boundary in case of boundary definition by means of xy-coordinates
EndCoordY	1 R	end y-coordinate of boundary in case of boundary definition by means of xy-coordinates
SpectrumSpec	key-value	spectrum specification type (from file, parametric)
SpShapeType	key-value	spectrum shape type in case of parametric spectrum specification (jonswap, pierson-moskowitz, gauss)
PeriodType	key-value	wave period type in case of parametric spectrum specification (peak, mean)
DirSpreadType	key-value	directional spreading type in case of parametric spectrum specification (power, degrees)
STIDALCOUTAbe	1 R	peak enhancement factor in case of jonswap spectrum
PeakEnhancFac		
PeakEnhancFac	1 B	width of spectral distribution in case of gaussian spectrum
GaussSpread	1 R 1 P	distance plane boundary at which boundary condition is specified uniform boundary condition if act as a filled
GaussSpread CondSpecAtDist*	1 R	distance along boundary at which boundary condition is specified, uniform boundary condition if not specified
GaussSpread CondSpecAtDist* WaveHeight*	1 R 1 R	wave height at specified distance or uniform value in case of parametric spectrum specification
GaussSpread CondSpecAtDist*	1 R	

continued from previous page

 * May be specified multiple times $^{+}$ Not supported by WAVE-GUI

R = Real; I = Integer; L = Logical; C = Character

continued from previous page

Keyword	Format	Description
DirSpreading*	1 R	directional spreading at specified distance or uniform value in case of parametric spectrum specification
Spectrum*	string	file name containing spectrum (string) in case of spectrum specification from file

* May be specified multiple times
 + Not supported by WAVE-GUI

R = Real; I = Integer; L = Logical; C = Character

A.1.2 Offline calculation

Running WAVE offline using FLOW output is currently not supported by the WAVE-GUI. To setup such a simulation please create an input file for an online WAVE-FLOW simulation first, and subsequently adjust the following items in the mdw-file with a text editor:

- ♦ The keyword FlowFile must be removed from the group [General].
- By default WAVE will look for the FLOW output on a pair of <com-name.dat/def> files where the name part matches the WAVE runid: <name.mdw>. If the FLOW output should be read from another com-file or from multiple com-files (such as in the case of a domain decomposition or parallel FLOW simultion) the name of all the runids need to be specified using the keyword ComFile in the group [General], e.g. ComFile = rif-001 rif-002 rif-003 for a three partition FLOW simulation.
- ♦ A time point must be specified for each time for which a calculation must be performed

Example:

```
[Timepoint]
Time = 1440
[Timepoint]
Time = 1680
```

The specified time points must correspond with times written on the com-file.

A.1.3 Using a template SWAN INPUT file

Some functionalities of SWAN are not available in D-Waves through the MDW file. It can be convenient to (re-)use a pre-existing SWAN INPUT file (along with a minimal MDW file) to start a D-Waves computation. It is possible to do so by keeping a minimal amount of keywords in the MDW file, and by adding a reference to the template SWAN INPUT file with the keyword INPUTTemplateFile under the group [General].

One can use a *complete* SWAN INPUT file, i.e. a file that does not need modifications (e.g. the INPUT file of a quasi-stationary computation, which contains more than one COMPUTE statement), or an *incomplete* SWAN INPUT file, for which modifications are needed. In the latter, special sequences of characters (tags) are required to fill in the incomplete parts. D-Waves reads the template INPUT file line by line, and fills in the missing information where it finds a tag. The location of the tags must comply with the SWAN rules for preparing an INPUT file (e.g. input is not allowed after the COMPUTE statement.)

While the user is still responsible for adding all the desired features to the INPUT file, D-Waves can fill in all time-related instances, such as begin and end of computation, time at which the input files are used, time at which the output is saved (\$TSTART\$, \$TSTOP\$). Saving and using hotstart files can also be included with tags (\$HOTSAVE\$,\$HOTSTART\$). In the case of \$HOTSAVE\$, D-Waves will add commands to the INPUT file to save a hotfile in NetCDF

format with stardard naming hot_NestedDomain_YYYYMMDD_HHMMSS.nc at the end of the current computation. Since the hotfiles are in NetCDF format, the tag \$HOTSAVE\$ should be placed in the OUTPUT REQUEST block before the COMPUTE statement. Similarly, when D-Waves finds the tag \$HOTSTART\$ it will add commands to use a hotfile in NetCDF format and stardard naming. Do not use more than one COMPUTE statement when using tags. All reserved tags are:

Tag	Tag description
\$TSTART\$	Beginning time of computation
\$TSTOP\$	Ending of computation
\$HOTSTART\$	Use hotfiles to initialize the computation (NetCDF option only)
\$HOTSAVE\$	Save a hotfile (NetCDF option only)

D-Waves needs two temporary TABLE output files to create a NetCDF output file. For this reason, files named SWANOUT1 and SWANOUT2 as in the Example below must be added manually to the INPUT template. In the Example, one can also see how to use the tags.

Example of SWAN INPUT with tags:

Ś TABLE 'COMPGRID' NOHEAD 'SWANOUT1' HSIGN DTR тм01 DEPTH VELOC TRANSP DSPR DISSIP LEAK OB XP ΥP DIST UBOT STEEPW WLENGTH FORCES RTP PDIR WIND Ś TABLE 'COMPGRID' NOHEAD 'SWANOUT2' DRTM01 TPS TM02 TMM10 DHSIGN SETUP DISSURF DISWCAP DISBOT DISVEG NPLANTS Ś \$HOTSAVE\$ Ś ITEST= 0 ITRACE= TEST 0 COMPUTE NONSTAT \$TSTART\$ 10.00 MIN \$TSTOP\$ STOP

Even when using a template SWAN INPUT file, a MDW file is needed to run a compution with D-Waves. Only a limited (and selected) number of keywords is needed, as can be seen in the Example. It is recommended to set FileVersion = to 02.01 under the group [WaveFileInformation] as this is a new functionality of D-Waves that was not available in previous versions. In the [General] block, the needed keywords are ReferenceDate, timeStep, TimeInterval and INPUTTemplateFile. Besides designating the Template INPUT file, these keywords are fundamental for computing the times (beginning and end) of the computation when using tags. Similarly for the [TimePoint] blocks. The remaining Grid, BedLevel and [Output] are needed to ensure that D-Waves can initialize the computation. In this configuration, the MDW file plays a limited role. Any D-Waves-related functionality under the [Output] block will be ignored.

Example of minimal MDW file:

[WaveFileInformation]
FileVersion = 02.01
[General]

ReferenceDate	=	2017-01-01
TimeStep	=	10
TimeInterval	=	60
INPUTTemplateFile	=	<pre>/path_to/INPUT_withTAGS_template</pre>
[TimePoint]		
Time	=	0.000000e+000
[TimePoint]		
Time	=	6.0000000e+001
[TimePoint]		
Time	=	1.2000000e+002
[TimePoint]		
Time	=	1.8000000e+002
[TimePoint]		
Time	=	2.400000e+002
[Domain]		
Grid	=	d11.grd
BedLevel	=	d11.dep
[Output]		

A.2 Attribute files of D-Waves

A.2.1 Introduction

In the following sections we describe the attribute files used in the input MDW-file of D-Waves or Delft3D-WAVE. Most of these files contain the quantities that describe one specific item, such as the bathymetry or the grid.

Most of the attribute files can be generated by the WAVE-GUI after defining an input scenario. Some files can only be generated by utility programs such as the curvilinear grid generated by RGFGRID. Still, we describe both types of files as it might be useful to know how the input data is structured to be able to generate (large) files.

For each file we give the following information (if relevant):

File content. File type (free formatted, fix formatted or unformatted). Filename and extension. Generated by (i.e. how to generate the file). Restrictions on the file content. Example(s).

Remarks:

- ♦ The access mode of all attribute files is sequential.
- ◇ In the examples the file contents is printed in font Courier New 10 and comment (not included in the file) in font Times New Roman 9, unless stated explicitly differently.

A.2.2 Orthogonal curvilinear grid

File contents	The co-ordinates of the orthogonal curvilinear grid at the depth points.
Filetype	ASCII
File format	Free formatted
Filename	<name.grd></name.grd>
Generated	RGFGRID

Record description:

Record	Record description
	Preceding description records, starting with an asterisk (*), will be ignored.
1	Record with Co-ordinate System = Cartesian or value Spherical
2	Record with Missing Value = $-9.9999900000000024E+02$. If this record is not given 0.0 will be assumed as missing value.
3	The number of grid <i>points</i> in m- and n-direction (2 integers).
4	Three real values (not used).
5 to K+5	A label and record number, the <i>x</i> -component of the world coordinates of all points in m-direction, starting with row 1 to row $nmax$, with as many continuation records as required by $mmax$ and the number of co-ordinates per record. The label and record number are suppressed on the continuation lines. This set of records is repeated for each row until $n = nmax$.
K+5 to 2K+4	A similar set of records for the y -component of the world coordinates.

K is the number of records to specify for all grid points a set of x- and y-co-ordinates.

Restrictions:

- \diamond The grid must be orthogonal.
- ♦ Input items in a record are separated by one or more blanks.

Example:

```
* Deltares, Delft3D-RGFGRID Version 4.16.01.4531, Sep 30 2008, 23:32:27
* File creation date: 2008-10-01, 23:19:22
Coordinate System = Cartesian
         7
    9
0 0 0
     1
       0.000000000000000000E+00 1.0000000000000000000E+02
                                              2.000000...
Eta=
         5.000000000000000E+02 6.00000000000000E+02
                                              7.000000...
        2.000000...
Eta=
      2
         5.0000000000000000E+02
                           7.000000...
      3
         0.000000000000000000000E+00
                           Eta=
                                              2.000000...
         7.000000...
Eta=
      4 0.000000000000000000E+00
                           2.000000...
```

Eta=	5	5.000000000000000000000000000000000000	6.000000000000000000000000000000000000	7.000000 2.000000 7.000000
Eta=	6	0.000000000000000000000000000000000000	1.000000000000000000000000000000000000	2.000000
Eta=	7	0.000000000000000000000000000000000000	1.000000000000000000000000000000000000	2.000000 7.000000
Eta=	1	1.000000000000000000000000000000000000	1.000000000000000000000000000000000000	1.000000 1.000000
Eta=	2	2.000000000000000000000000000000000000	2.000000000000000000000000000000000000	2.000000 2.000000
Eta=	3	3.000000000000000000000000000000000000	3.000000000000000000000000000000000000	3.000000 3.000000
Eta=	4	4.000000000000000000000000000000000000	4.000000000000000000000000000000000000	4.000000 4.000000
Eta=	5	5.000000000000000000000000000000000000	5.000000000000000000000000000000000000	5.000000 5.000000
Eta=	6	6.000000000000000000000000000000000000	6.000000000000000000000000000000000000	6.000000 6.000000
Eta=	7	7.000000000000000000000000000000000000	7.000000000000000000000000000000000000	7.000000 7.000000

A.2.3 Time-series for wave boundary conditions

ita.

Record description:

Keyword	Description
location	location name (quoted string)
time-function	time function type (quoted string: "non-equidistant")
reference-time	reference time (yyyymmdd integer or quoted string: "from model")
time-unit	time unit (quoted string: "decades", "years", "days", "hours", "min- utes", "seconds", "ddhhmmss", "absolute")
interpolation	interpolation type (quoted string: "linear" or "block")
parameter & unit	parameter name & unit

A.2.4 Obstacle file

File contents	Name of the polyline with obstacles.
Filetype	ASCII
File format	Fix formatted for text variables, free formatted for real and integer values.
Filename	<name.obs></name.obs>
Generated	QUICKIN as land boundary, or manually offline

Record description:

A header block containing information about versions, and the name of the polyline file.

For each observation area the details.

Keyword	Format	Description			
ObstacleFileInformation					
FileVersion	n string	version number of <*.obs> file			
PolylineFil string		name of polyline file with polylines defining obstacles			
Obstacle*					
Name string		name of obstacle in polyline file			
Туре	key-value	type of obstacle (sheet, dam)			
TransmCoef	1 real	transmission coefficient in case of sheet obstacle			
Height	1 real	dam height in case of dam obstacle			
Alpha	1 real	alpha in case of dam obstacle			
Beta	1 real	beta in case of dam obstacle			
Reflections	s key-value	type of reflections (no, specular, diffuse)			
ReflecCoef	1 real	reflection coefficient if reflections are activated			

* May be specified multiple times

Restriction:

♦ The maximum record length in the file is 132.

Example:

The number of obstacles is 2. They are called 'Breakwater West', 'Breakwater East 2' and 'Breakwater East 1'

```
[ObstacleFileInformation]
  FileVersion = 02.00
PolylineFile = breakwater.pol
[Obstacle]
  Name
               = Breakwater West
  Туре
              = dam
               = 0.0000000e+000
= 2.5999999e+000
  Height
  Alpha
               = 1.5000001e-001
  Beta
  Reflections = no
[Obstacle]
               = Breakwater East 1
  Name
               = dam
  Type
               = 0.0000000e+000
  Height
               = 2.5999999e+000
  Alpha
               = 1.5000001e-001
  Beta
  Reflections = no
[Obstacle]
               = Breakwater East 2
  Name
  Type
               = dam
               = 0.0000000e+000
  Height
              = 2.5999999e+000
  Alpha
  Beta
              = 1.500001e-001
  Reflections = no
```

Example polyline file:

Breakwater West	
7 2	
1.9174138E+05	6.0961231E+05
1.9190197E+05	6.1048831E+05
1.9242755E+05	6.1140806E+05
1.9321591E+05	6.1228400E+05
1.9422327E+05	6.1301400E+05
1.9536202E+05	6.1358338E+05
1.9655916E+05	6.1394831E+05
Breakwater East	1
2 2	
2.0846027E+05	6.0775812E+05
2.0838540E+05	6.0968968E+05
Breakwater East	2
2 2	
2.1022712E+05	6.0998915E+05
2.1031696E+05	6.0765331E+05

A.2.5 Segment file

File contents	The coordinates of one or more polylines. Each polyline (piecewise
	linear) is written in a single block of data.
Filetype	ASCII
File format	Free formatted
Filename	<name.pol></name.pol>
Generated	RGFGRID, QUICKIN, D-Flow FM GUI, etc

Record description:

Record	Record description
	Preceding description records, starting with an asterisk (*), and will be ignored.
1	A non blank character string, starting in column one.
2	Two integers N_r, N_c representing the numbers of rows and number of columns for this block of data.
	Two reals representing the x, y or λ, ϕ -coordinate, followed by remaining data values at that location (if $N_c > 2$).

Example:

```
* Polyline L007
*
L007
6 2
            132400.0
                         549045.0
            132345.0
                         549030.0
            132165.0
                         549285.0
            131940.0
                         549550.0
            131820.0
                         549670.0
            131585.0
                         549520.0
* Polyline L008
```

*		
L008		
4 2		
	131595.0 131750.0 131595.0 131415.0	549685.0 549865.0 550025.0 550175.0
*		
* Polyline	L009	
*		
L009		
6 2		
	131595.0	549655.0
	148975.0	564595.0
	150000.0	564935.0
	152105.0	565500.0
	153150.0	566375.0
	154565.0	567735.0

A.2.6 Depth file

The bathymetry in the model area, represented by depth values (in
metres) for all grid points.
ASCII
Free formatted or unformatted
<name.dep></name.dep>
FLOW-GUI (only for uniform depth values).
Offline with QUICKIN and data from digitised charts or GIS-database.

Record description:

Filetype	Record description
Free formatted	Depth values per row, starting at $N = 1$ to $N = Nmax$, separated by one or more blanks. The number of continuation lines is deter- mined by the number of grid points per row (Mmax) and the maxi- mum record size of 132.
Unformatted	Mmax depth values per row for $N = 1$ to $N = Nmax$.

Restrictions:

- ♦ The file contains one M and N line more than the grid dimension.
- ♦ The maximum record length in the free formatted file is 132.
- ♦ Depth values from the file will not be checked against their domain.
- ♦ The input items are separated by one or more blanks (free formatted file only).
- \diamondsuit The default missing value is: -999.0

Example:

File containing 16 * 8 data values for a model area with 15 * 7 grid points (free formatted file).

1.0	2.0	3.0	4.0	-5.0	-5.0	-5.0	8.0	9.0	10.0	11.0
12.0	13.0	14.0	-5.0	-999.0						
3.0	4.0	5.0	6.0	7.0	-6.0	-6.0	10.0	11.0	12.0	13.0
14.0	15.0	16.0	17.0	-999.0						
5.0	6.0	7.0	8.0	9.0	10.0	-7.0	12.0	13.0	14.0	15.0
16.0	17.0	18.0	19.0	-999.0						
7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0

18.0	19.0	-7.0	19.0	-999.0						
9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0
20.0	19.0	18.0	17.0	-999.0						
-7.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	19.0
18.0	17.0	16.0	15.0	-999.0						
-8.0	-8.0	15.0	16.0	17.0	18.0	19.0	20.0	19.0	18.0	17.0
16.0	15.0	14.0	13.0	-999.0						
-999.0	-999.0	-999.0	-999.0	-999.0	-999.0	-999.0	-999.0	-999.0	-999.0	-999.0
-999.0	-999.0	-999.0	-999.0	-999.0						

The resulting 2D-matrix for the depth values is then (for simplicity all values are here transformed into integers, in reality this does not occur):

N-direction

↑	8	_9	-9	-9	18	19	20	19	18	17	16	15	14	13	12	-9	- 9
1	7		-	-												-	2
	/	-8	-8	15	16	17	18	19	20	19	18	17	16	15	14	13	-8
	6	-7	12	13	14	15	16	17	18	19	20	19	18	17	16	15	14
	5	9	10	11	12	13	14	15	16	17	18	19	20	19	18	17	16
	4	7	8	9	10	11	12	13	14	15	16	17	18	19	-7	19	18
	3	5	6	7	8	9	10	-7	12	13	14	15	16	17	18	19	20
	2	3	4	5	6	7	-6	-6	10	11	12	13	14	15	16	17	-6
	1	1	2	3	4	-5	-5	-5	8	9	10	11	12	13	14	-5	-5
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
														_	→ M-c	direc	tion

A.2.7 Space-varying bottom friction (not implemented for D-Waves)

File contents:

Bottom friction coefficients values (induced by waves) for all grid points, starting from row number (y-direction) 1 for all points in the xdirection (1 to MMAX), until the last row number (NMAX). Note that for the bottom friction values also a constant value over the entire computational area can be applied (see ??). free formatted / unformatted.

maximum record length in the (free) formatted file is 132. Bottom friction coefficients values from the file will not be checked against

File type: **Restrictions:**

Example:

0.01 0.01 0.02 0.03 0.02 0.01 0.01 0.03 0.012 0.012 0.011 0.03 0.013 0.013 0.013 0.03 0.014 0.014 0.013 0.03

the ranges specified in ?? (domain of input parameters).

The resulting 2D-matrix for the bottom friction coefficients values:

(formatted file)

N-c	dir	ection														
\uparrow	8															
	7															
	6	0.014	0.014	0.013	0.03											
	5	0.013	0.013	0.013	0.03											
	4	0.012	0.012	0.011	0.03											
	3	0.011	0.011	0.01	0.03											
	2	0.01	0.01	0.02	0.03											
	1	0.01	0.01	0.02	0.03											
		1	2	3	4	5	6	7	8 9	9 10) 11	12	13	14	15	16
													_	→ M-c	lirec	tion

A.2.8 Wave boundary conditions

In Delft3D-WAVE the users could choose different sets of wave boundary conditions and wind conditions. However not all the features could be specified by the GUI. The functionalities could be used by adding keywords in <mdw>-file.

In the following subsections, 4 options are described:

- 1 Time-varying and uniform wave conditions in <wavecon.rid>.
- 2 Time-varying and space-varying wave boundary conditions using <bcw>-files
- 3 Space-varying wave boundary conditions using for UNIBEST coupling (<md-vwac> file)
- 4 Space-varying wave boundary conditions: Spectral input and output files

A.2.8.1 Time-varying and uniform wave conditions in <wavecon.rid> file

In some cases where e.g. the morphology is event-driven or design conditions for a structure are needed, a set of different wave conditions are to be calculated. These wave conditions can be specified in an additional file, called <wavecon.*rid*> (rid=runid of the <mdw>-file). This file can only be used when constant parametric boundary conditions are prescribed in the wave model. If other boundary conditions are specified, these will be adjusted into constant parametric boundary conditions. To use this *Wavecon* option, just simply add the <wavecon.*rid*> file to the working directory and the system will use the file automatically.

A WAVE computation is always performed on a certain time point (based on the reference date). If a <wavecon.*rid*> file exists in the working directory, it will get its wave boundary conditions (including wind and water level) from that file. The boundary condition values in the default <*rid*.mdw> file will not be used then. When the time point of the wave computation lies between two prescribed time points in the <wavecon.*rid*> file, it will interpolate the wave, wind and water level conditions between these two time points.

Remarks:

- If the wind speed is prescribed as 0 m/s, wind will not be taken into account in the wave computation.
- ♦ If the time point of the wave computation lies before the first prescribed time field in the <wavecon.rid> file, it will use the conditions of this first field.
- ♦ If a mean period is chosen in the default <*rid*.mdw> file, this period will be modified into the peak period (the value of the period will remain the same).
- ♦ If a variable boundary condition is chosen in the default <*rid*.mdw> file, this condition will be modified into a constant condition along the whole boundary.
- The defined wave boundary conditions are overruled by the prescribed wave conditions in the <wavecon.*> file.

File contents:	List of wave and wind conditions
File type:	free formatted/unformatted.
Restrictions: Example:	maximum record length in the (free) formatted file is 132. formatted file of a $<$ wavecon. <i>rid</i> $>$

* Itdat	e Hs	Тр	Dir(°)	ms	wl	windspeed	wind dir.($^{\circ}$)
BL01							
38 * n	umber of	rows	number	of c	olumns		
0	0.01	1.0	270	10	0	0.0	270
60	1.00	7.0	270	4	1.26	10.0	270
240	0.01	10.0	270	10	0.70	5.0	270

Description of parameters:

Itdate [min]	Time point after reference date in minutes; should be given in minutes after the reference date (ITDATE), specified in the $<$ <i>rid</i> .mdw $>$ file.
H_s [m]	Significant wave height in metres; this value will be prescribed on all specified wave boundaries.
T_p [s]	Peak period of the energy spectrum. This value will be prescribed on all specified wave boundaries.
Dir [°]	Mean wave direction according to the Nautical or Cartesian conven- tion (in degrees). This value will be prescribed on all specified wave boundaries.
ms [-] or [°]	Width energy distribution. This is the directional standard deviation in power or in degrees. If the option <i>Degrees</i> is chosen in the sub- window <i>Spectral space</i> , it is in degree. If the option <i>Cosine power</i> is chosen in the same above sub-window, it is in the power m .
Water level [m]	The additional water level over the entire wave model. The water level is measured positively upward from the same datum from which the bottom levels are taken.
Wind speed [m/s] Wind direction [°]	Wind velocity at 10 m elevation. Wind direction at 10 m elevation according to the convention, speci- fied in the sub-window Constants .

Remarks:

- The defined wave boundary conditions in the mdw file are overruled by the prescribed wave conditions in the <wavecon.*> file.
- If wavecon or <md-vwac> file is used as wave boundary condition, the width energy distribution *ms* is set (overwritten) to be power.

A.2.8.2 Time-varying and space-varying wave boundary conditions using BCW files

In Delft3D-WAVE, time series of wave boundary conditions have been implemented which are not able to be set in GUI yet. The users can include the keywords *TSeriesFile* in Datagroup *General* in MDW-file. The format of BCW-file refer to the section A.2.3. The segments of boundary conditions could be set using the keywords <code>CondSpecAtDist</code> in Datagroup *Boundary* in MDW-file. If the wave computations are carried out at multiple time points, the time point could be specified in Datagroup *Timepoint* in MDW-file.

The following examples showed different scenarios of spatial-varying and time-varying wave boundnary conditions. It is a stand-alone wave model with 2 boundaries, i.e., Boundary West and Boundary South. The Boundary West is devided into 6 segments and the Boundary

South is devided into 9 segments. For each segments, different parameters such as Wave Height, Period, Direction, Dirspreading could be defined at different time point in the BCW-file.

The 3 examples show the following 3 scenarios:

- 1 Multiple time points and spatial uniform wave boundary conditions.
- 2 One/multiple time points and space-varying wave boundary conditions
- 3 Multiple time points and space-varying wave boundary conditions, with time-varying but spatial uniform wind field

Example 1

If one would like to have a wave model with uniform wave boundary conditions along one boundary line for multiple time points, one should add them to Datagroup *General* as follows:

```
[WaveFileInformation]
                         = 02.00
  FileVersion
[General]
  ProjectName
                        = Carrara
                        = 001
  Description
Description
                  =
= Carrara test run
                   = fa.
= stationa
= nautical
= 2006-01-
reseri
  OnlyInputVerify
  SimMode
                        = stationary
  DirConvention
  ReferenceDate
                         = 2006-01-05
  TSeriesFile
                        = timeseries.bcw
                         = 2.0
  WindSpeed
  WindDir
                         = 2.0
. . .
```

In Datagroup *TimePoint* the following should be added:

[TimePoint]		
Time	=	6.0000000e+001
WaterLevel	=	0.0000000e+000
XVeloc	=	0.0000000e+000
YVeloc	=	0.0000000e+000
[TimePoint]		
Time	=	1.2000000e+002
WaterLevel	=	0.0000000e+000
XVeloc	=	0.0000000e+000
YVeloc	=	0.0000000e+000
[TimePoint]		
Time	=	1.8000000e+002
WaterLevel	=	0.0000000e+000
XVeloc	=	0.0000000e+000
YVeloc	=	0.0000000e+000
[TimePoint]		
Time	=	2.4000000e+002
WaterLevel	=	0.0000000e+000
XVeloc	=	0.0000000e+000
YVeloc	=	0.0000000e+000

In Datagroup *Boundary* the following should be added:

[Boundary] Name

= Boundary West

Definition StartCoordX EndCoordY EndCoordY SpectrumSpec SpShapeType PeriodType PeakEnhanceFac GaussSpread [Boundary] Name Definition StartCoordX EndCoordX EndCoordY EndCoordY SpectrumSpec SpShapeType PeriodType PeriodType PeriodType PeriodType PeakEnhanceFac GaussSpread	5.0000000e+005 4.9274090e+006 4.7885805e+006 parametric jonswap peak power 3.3000000e+000 9.999998e-003 Boundary South xy-coordinates 5.0000000e+005 6.2226400e+005 4.7608150e+006

The <bcw>-file, which is defined in section A.2.3, for the uniform boundaries with multiple time points should be then:

location	'Boundary West	1	
time-function	'non-equidistant'		
reference-time	20060105		
time-unit	'minutes'		
interpolation	'linear'		
parameter	'time	,	unit '[min]'
parameter	'WaveHeight'		unit '[m]'
parameter	'Period'		unit '[s]'
parameter	'Direction'		unit '[N^o]'
parameter	'DirSpreading'		unit '[-]'
0.00 5.5300	8.2400 -171.0700 2.0000		
	8.2400 -171.0700 2.0000		
120.00 1.5300	8.2400 -171.0700 2.0000		
180.00 3.5300	8.2400 -171.0700 2.0000		
240.00 1.5300	8.2400 -171.0700 2.0000		
location	'Boundary South	,	
time-function	'non-equidistant'		
reference-time	20060105		
time-unit	'minutes'		
interpolation	'linear'		
parameter	'time	'	unit '[min]'
parameter	'WaveHeight'		unit '[m]'
parameter	'Period'		unit '[s]'
parameter	'Direction'		unit '[N^o]'
parameter	'DirSpreading'		unit '[-]'
0.00 1.2700	8.4700 -147.8800 2.0000		
60.00 3.2700	8.4700 -147.8800 2.0000		
120.00 1.2700	8.4700 -147.8800 2.0000		
	8.4700 -147.8800 2.0000		
240.00 3.2700	8.4700 -147.8800 2.0000		

Example 2

If one would like to have a wave model with space-varying wave boundary conditions, one should add them to Datagroup *General* as follows:

[WaveFileInformation]	
FileVersion	= 02.00
[General]	
ProjectName	= Carrara
ProjectNr	= 001
Description	=
Description	= Carrara test run
OnlyInputVerify	= false
SimMode	= stationary
DirConvention	= nautical
ReferenceDate	= 2006-01-05
TSeriesFile	= timeseries.bcw
WindSpeed	= 2.0
WindDir	= 2.0

In Datagroup *TimePoint* the following should be added:

 [TimePoint]		
Time	=	6.0000000e+001
WaterLevel	=	0.0000000e+000
XVeloc	=	0.0000000e+000
YVeloc	=	0.0000000e+000

In Datagroup *Boundary* the following should be added:

[Boundary]		
Name	-	Boundary West
Definition	=	xy-coordinates
StartCoordX	=	5.0000000e+005
EndCoordX	=	5.0000000e+005
StartCoordY	=	4.9274090e+006
EndCoordY	=	4.7885805e+006
SpectrumSpec	=	parametric
SpShapeType	=	jonswap
PeriodType	=	peak
DirSpreadType	=	power
PeakEnhanceFac	=	3.3000000e+000
GaussSpread	=	9.9999998e-003
CondSpecAtDist	=	2.7765670e+004
CondSpecAtDist	=	5.5531340e+004
CondSpecAtDist	=	6.3297008e+004
CondSpecAtDist	=	8.3297008e+004
CondSpecAtDist	=	1.1106268e+005
CondSpecAtDist	=	1.3882834e+005
[Boundary]		
Name	=	Boundary South
Definition	=	xy-coordinates
StartCoordX	=	5.0000000e+005
EndCoordX	=	6.2226400e+005
StartCoordY	=	4.7608150e+006
EndCoordY	=	4.7608150e+006
SpectrumSpec	=	parametric
SpShapeType	=	jonswap
PeriodType	=	peak
DirSpreadType	=	power
PeakEnhanceFac	=	3.3000000e+000
GaussSpread	=	9.9999998e-003
CondSpecAtDist	=	0.0000000e+000
CondSpecAtDist	=	1.0000000e+003
CondSpecAtDist	=	1.0000000e+004

CondSpecAtDist = 2.0377330e+004 CondSpecAtDist = 4.0754660e+004 CondSpecAtDist = 6.1131988e+004 CondSpecAtDist = 8.1509320e+004 CondSpecAtDist = 1.0188665e+005 CondSpecAtDist = 1.2226398e+005

The <bcw>-file, which is defined in section A.2.3, should be like:

location	'Boundary West	ч. Т					
time-function	'non-equidistant'						
reference-time	20060105						
time-unit	'minutes'						
interpolation	'linear'						
parameter	'time	1	unit '[min]'				
parameter	'WaveHeight'		unit '[m]'				
parameter	'WaveHeight'		unit '[m]'				
parameter	'WaveHeight'		unit '[m]'				
parameter	'WaveHeight'		unit '[m]'				
parameter	'WaveHeight'		unit '[m]'				
parameter	'WaveHeight'		unit '[m]'				
parameter	'Period'		unit '[s]'				
parameter	'Period'		unit '[s]'				
parameter	'Period'		unit '[s]'				
parameter	'Period'		unit '[s]'				
parameter	'Period'		unit '[s]'				
parameter	'Period'		unit '[s]'				
parameter	'Direction'		unit '[N^o]'				
parameter	'Direction'		unit '[N^o]'				
parameter	'Direction'		unit '[N^o]'				
parameter	'Direction'		unit '[N^o]'				
parameter	'Direction'		unit '[N^o]'				
parameter	'Direction'		unit '[N^o]'				
parameter	'DirSpreading'		unit '[-]'				
parameter	'DirSpreading'	1 5					
parameter	'DirSpreading'	unit '[-]' unit '[-]'					
parameter	'DirSpreading'		unit '[-]'				
parameter	'DirSpreading'		unit '[-]'				
parameter	'DirSpreading'		unit '[-]'				
-	1.8600 1.9100 1.8400	1.7100					
	8.2400 8.2400 8.4700						
	3.5300 -173.5300 -167		-154.3000				
	2.0000 2.0000 2.0000						
60.00 3.5300 3.8600	1.8600 3.9100 3.8400	3.7100					
8.2400 8.2400	8.2400 8.2400 8.4700	8.4700					
-171.0700 -17	3.5300 -173.5300 -167	.2300 -160.5600	-154.3000				
2.0000 2.0000	2.0000 2.0000 2.0000	2.0000					
location	'Boundary South	1					
time-function	'non-equidistant'						
reference-time	20060105						
time-unit	'minutes'						
interpolation	'linear'						
parameter	'time	•	unit '[min]'				
parameter	'WaveHeight'		unit '[m]'				
parameter	'WaveHeight'		unit '[m]'				
parameter	'WaveHeight'		unit '[m]'				
parameter	'WaveHeight'		unit '[m]'				
parameter	'WaveHeight'		unit '[m]'				
parameter	'WaveHeight'		unit '[m]'				
parameter	'WaveHeight'		unit '[m]'				
parameter	'WaveHeight'		unit '[m]'				
parameter	'WaveHeight'		unit '[m]'				
parameter	'Period'		unit '[s]'				

parameter	'Period'	unit '[s]'
parameter	'Period'	unit '[s]'
parameter	'Direction'	unit '[N^o]'
parameter	'DirSpreading'	unit '[-]'
	1.2700 1.2700 1.2700 1.3600 1.6000	
	8.4700 8.4700 8.4700 8.1600 7.3500	
	00 -147.8800 -147.8800 -147.8800 -	
	2.0000 2.0000 2.0000 2.0000 2.0000	
	1.2700 1.2700 3.2700 3.3600 3.6000	
	4700 8.4700 8.4700 8.1600 7.3500 7	
	-147.8800 -147.8800 -147.8800 -178	
2.0000 2.	0000 2.0000 2.0000 2.0000 2.0000 2	.0000 2.0000 2.0000

Example 3

If one would like to have a wave model with space-varying wave boundary conditions, with time-varying but spatial uniform wind field, one should add them to Datagroup *General* as follows:

```
[WaveFileInformation]
FileVersion = 02.00
[General]
ProjectName = Carrara
ProjectNr = 001
Description =
Description = Carrara test run
OnlyInputVerify = false
SimMode = stationary
DirConvention = nautical
ReferenceDate = 2006-01-05
TSeriesFile = timeseries.bcw
```

```
• • •
```

In Datagroup *TimePoint* the following should be added:

• • •		
[TimePoint]		
Time	=	6.0000000e+001
WaterLevel	=	0.0000000e+000
XVeloc	=	0.0000000e+000
YVeloc	=	0.0000000e+000
WindSpeed	=	20.0

WindDir	=	20.0
[TimePoint]		
Time	=	1.2000000e+002
WaterLevel	=	0.0000000e+000
XVeloc	=	0.0000000e+000
YVeloc	=	0.0000000e+000
WindSpeed	=	15.0
WindDir	=	15.0
[TimePoint]		
Time	=	1.8000000e+002
WaterLevel	=	0.0000000e+000
XVeloc	=	0.0000000e+000
YVeloc	=	0.0000000e+000
WindSpeed	=	10.0
WindDir	=	10.0
[TimePoint]		
Time	=	2.4000000e+002
WaterLevel	=	0.0000000e+000
XVeloc	=	0.0000000e+000
YVeloc	=	0.0000000e+000
WindSpeed	=	2.0
WindDir	=	2.0

In Datagroup *Boundary* the following should be added:

. . . [Boundary] = Boundary West Name Definition = xy-coordinates = 5.0000000e+005 StartCoordX = 5.000000e+005 EndCoordX = 4.9274090e+006 StartCoordY EndCoordY = 4.7885805e+006 SpectrumSpec = parametric SpShapeType = jonswap = peak PeriodType

 PeriodType
 = peak

 DirSpreadType
 = power

 PeakEnhanceFac
 = 3.3000000e+000

 GaussSpread
 = 9.9999998e-003

 CondSpecAtDist
 = 2.7765670e+004

 CondSpecAtDist
 = 5.5531340e+004

 CondSpecAtDist
 = 6.3297008e+004

 CondSpecAtDist CondSpecAtDist = 8.3297008e+004 = 1.1106268e+005 = 1.3882834e+005 CondSpecAtDist [Boundary] = Boundary South Name Definition = xy-coordinates StartCoordX = 5.000000e+005EndCoordX = 6.2226400e+005= 4.7608150e+006 = 4.7608150e+006 StartCoordY EndCoordY = parametric SpectrumSpec SpShapeType = jonswap PeriodType = peak DirSpreadType = power PeakEnhanceFac = 3.3000000e+000 GaussSpread = 9.9999998e-003 GaussSpread CondSpecAtDist = 9.95555 = 0.0000000e+000 CondSpecAtDist CondSpecAtDist = 1.0000000e+003

 CondSpecAtDist
 = 1.0000000e+004

 CondSpecAtDist
 = 2.0377330e+004

 CondSpecAtDist
 = 4.0754660e+004

 CondSpecAtDist
 = 6.1131988e+004

```
CondSpecAtDist = 8.1509320e+004
CondSpecAtDist = 1.0188665e+005
CondSpecAtDist = 1.2226398e+005
```

The <bcw>-file, which is defined in section A.2.3, should be the same as that in Example 2.

A.2.8.3 Space-varying wave boudnary conditions using for UNIBEST coupling (<md-vwac>-file)

For the coastline model UNIBEST, wave computations can be required representing a wave climate. Such a wave climate is schematized into several wave conditions and corresponding wind conditions. These wave and wind conditions can be defined all in one file: the so-called <md-vwac>-file. This file must be added to the working directory of the wave model. Only when this file is present in the working directory, wave computations will be carried out for all wave conditions in the <md-vwac>-file. In this way a large number of wave conditions can be computed in a batch mode.

File contents:	List of wave and wind conditions for UNIBEST model with no time points
File type:	free formatted/unformatted.
Restrictions:	maximum record length in the (free) formatted file is 132.
Example:	formatted file of a <md-vwac.<i>runid></md-vwac.<i>

* Name of main SCO file: NZ_STORM.SCO													
UNIBEST * (MORSYS/UNIBEST)													
10 *to	tal n	umber of	f way	ve con	ditions								
* HmO	Тр	theta	ms	НO	U10	theta_wind							
* (m)	(s)	(N°)	-	(m)	(m/s)	(N°)							
	5	330	4	0.2	0	0							
1.5	5	310	4	0.1	0	0							
3.0	8	350	4	0.4	0	0							
2.2	7	270	4	0.3	0	0							

Description of parameters:

$H_{m0} \ \mathrm{[m]}$	Significant wave height in metres; this value will be prescribed on all specified wave boundaries.
$T_p \left[\mathbf{s} ight]$	Peak period of the energy spectrum. This value will be prescribed on all specified wave boundaries.
theta $[N^{\circ}]$	Mean wave direction according to the Nautical or Cartesian conven- tion (in degrees). This value will be prescribed on all specified wave boundaries.
ms [-]	Width energy distribution. This is the directional standard deviation in degrees if the option <i>Degrees</i> is chosen in the sub-window <i>Spectral space</i> or it is the power m if the option <i>Cosine power</i> is chosen in the same above sub-window.
H0 [m]	The additional water level over the entire wave model. The water level is measured positively upward from the same datum from which the bottom levels are taken.
U10 [m/s]	Wind velocity at 10 m elevation.
Theta_wind $[N^{\circ}]$	Wind direction at 10 m elevation according to the convention, speci- fied in the sub-window Constants .

Remarks:

- ♦ On the third line of the md-vwac file the amount of wave conditions is given. In the mdwfile or in the WAVE-GUI an equal amount of time points must be prescribed matching with the amount of wave conditions in the md-vwac file.
- ♦ The defined wave boundary conditions are overruled by the prescribed wave conditions in the md-vwac file.

A.2.8.4 Time- and space-varying wave boundary conditions: TPAR file

TPAR files containing non-stationary wave parameters. A TPAR file is for only one section of the boundaries. For space-varying, the user has to define multiple TPAR files. The TPAR file has the string TPAR on the first line of the file and a number of lines which each contain 5 numbers:

- 1 Time (ISO notation),
- 2 Hs,
- 3 Period (average or peak period depending on the choice given in the Swan Spectral Space under *Edit Spectral space*),
- 4 Peak Direction (Nautical or Cartesian, depending on the settings in the *Physical parameters*),
- 5 Directional spread (in degrees or as power of Cos depending on the choice given in the Swan Spectral Space under *Edit Spectral space*).

Example of a TPAR file (for example, the filename is TPAR01.bnd):

TPAR				
19920516.1300	4.2	12.	-110.	22.
19920516.1800	4.2	12.	-110.	22.
19920517.0000	1.2	8.	-110.	22.
19920517.1200	1.4	8.5	-80.	26.
19920517.2000	0.9	6.5	-95.	28.

Thus in the mdw file, the corresponding segment is:

[Boundary]	
Name	= Bound1
Definition	= grid-coordinates
StartCoordM	= 0
EndCoordM	= 0
StartCoordN	= 0
EndCoordN	= 39
SpectrumSpec	= from file
Spectrum	= TPAR01.bnd

The boundary section is defined in MN format.

A.2.9 Spectral input and output files

There are two types of Spectrum files:

- ♦ files containing stationary or non-stationary 1D spectra (usually from measurements)
- files containing stationary or non-stationary 2D spectra (from other computer programs or other SWAN runs).

The structure of the files containing 1D or 2D spectra is described below (there is no relation with the definition of the boundary file generated by WAM or WAVEWATCH III). 1D and 2D files can be used for one or more than one location. The spectral frequencies (and directions in the case of a 2D spectrum) do not have to coincide with the frequencies and directions used in the present WAVE (SWAN) run (in a nested run SWAN will interpolate to these frequencies and directions). The co-ordinates of locations in the 1D and 2D files are ignored when SWAN reads this.

This appendix describes the format of the files for spectral input (command BOUNDARY) and output (commands SPEC and NEST) by SWAN. The files are recognised by SWAN or another reading program by the presence of the keyword SWAN and a version number on the first line of the file. This description is valid for version number 1.

These files contain the following information:

- ♦ co-ordinates of locations
- ♦ frequencies
- ♦ directions (if used for 2D)
- ♦ time (if time-dependent)
- ♦ spectral energy or variance densities (and aver. dir. and dir. spread if 1D)

Example of a 1D non-stationary spherical co-ordinates file:

SWAN 1	Swan standard spectral file, version
\$ Data produced by SWAN vers	ion 40.41
<pre>\$ Project:'projname' ;</pre>	run number: 'runnum'
TIME	time-dependent data
1	time coding option
LONLAT	locations in spherical co-ordinates
2	number of locations
1.00 1.00	
1.20 1.00	
RFREQ	relative frequencies in Hz
25	number of frequencies
0.0418	
0.0477	
0.0545	
0.0622	
0.0710	
0.0810	
0.0924	
0.1055	
0.1204	
0.1375	
0.1569	
0.1791	
0.2045	
0.2334	
0.2664	
0.3040	
0.3470	

0.3961 0.4522 0.5161 0.5891 0.6724 0.7675 0.8761 1.0000 QUANT 3 VaDens m2/Hz -0.9900E+02 CDIR degr -0.9990E+03 DSPRDEGR degr -0.9000E+01 19680606.030000 LOCATION 1 0.3772E-03 190.1 6.3 0.1039E-02 190.2 6.5 0.2281E-02 190.3 6.7 0.3812E-02 190.3 6.7 0.4255E-02 190.3 6.6 0.2867E-02 190.1 6.3 189.6 0.1177E-02 5.8 0.3892E-03 192.0 15.2 0.8007E-03 244.5 22.9 0.6016E-02 251.4 11.5 0.1990E-01 251.0 11.0 0.3698E-01 249.9 10.9 0.3874E-01 248.1 12.1 0.2704E-01 246.6 13.0 0.1672E-01 247.0 13.5 0.1066E-01 247.7 13.7 0.5939E-02 247.3 14.0 245.9 14.9 0.1697E-02 0.8803E-03 245.6 15.1 0.4541E-03 245.5 15.3 15.5 0.2339E-03 245.4 0.1197E-03 245.5 15.6 0.6129E-04 245.5 15.7 245.3 15.9 0.3062E-04 LOCATION 2 0.7129E-02 67.2 25.3 67.5 21.7 0.3503E-01 19.7 0.1299E+00 68.2 0.5623E+00 69.7 18.0 71.4 18.0 0.1521E+01 0.3289E+01 74.0 18.8 0.4983E+01 77.2 20.3 79.9 22.0 0.4747E+01 0.2322E+01 79.4 30.7 0.1899E+01 341.1 56.2 314.6 39.4 0.1900E+01 324.3 0.6038E+01 31.9 0.8575E+01 326.1 31.0 0.4155E+01 325.1 30.5 0.1109E+01 322.8 32.9 0.7494E+00 323.1 33.3 0.4937E+00 323.1 33.3 0.2953E+00 323.3 33.7 0.1661E+00 323.6 34.0

number of quantities in table variance densities in m2/Hz unit exception value average Cartesian direction in degr unit exception value directional spreading unit exception value date and time 0.9788E-01 323.7 33.8 0.5766E-01 323.8 33.6 0.3397E-01 324.0 33.5 0.2001E-01 324.1 33.4 0.1179E-01 324.2 33.3 0.6944E-02 324.2 33.2

Example of a 2D stationary Cartesian co-ordinates file:

SWAN 1	Swan standard spectral file, version
\$ Data produced by SWAN versi	
<pre>\$ Project:'projname' ;</pre>	run number:'runnum'
LOCATIONS	locations in x-y-space
2	number of locations
0.00 0.00 22222.22 0.00	
22222.22 0.00 RFREQ	relative frequencies in Hz
25	number of frequencies
0.0418	
0.0477	
0.0545	
0.0622	
0.0710	
0.0810	
0.0924 0.1055	
0.1204	
0.1375	
0.1569	
0.1791	
0.2045	
0.2334	
0.2664 0.3040	
0.3470	
0.3961	
0.4522	
0.5161	
0.5891	
0.6724	
0.7675 0.8761	
1.0000	
CDIR	spectral Cartesian directions in degr
24	number of directions
7.5000	
22.5000	
37.5000	
52.5000 67.5000	
87.5000	
97.5000	
112.5000	
127.5000	
142.5000	
157.5000	
172.5000	
187.5000 202.5000	
217.5000	
232.5000	
247.5000	
262.5000	
277.5000	
292.5000	

32 33 35 QU 1 Va m2 -0	7.5 2.5 7.5 2.5 ANT Den /Hz .99 CTO	000 000 000 s /de 00E								va un	ria it	er of de ance de otion v	ensit				r
0. 0	422 0	574 0	E-1 0	1 0	0	0	0	0	0	0	0	1	0	0			
0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	44	3	0			
0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	817	60	1			
0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	8018	574	9			
0	0	0	0	0	0	0	0	0	0	0		39230		38			
0 0	0	0	0	0	0	0	0	0	0	0	0						
0	0	0	0	0	0	0	0	0	0	0	0	99010					
0	0	0	0	0	0	0	0	0				47054					
0 0	0	0	0	0 0	0	0	0	0	0	0			131	2			
0	0	0	0	0	0	0	0	0 0	0	0	0	13228	0	0			
0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0		0	39417	0	0			
0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	0	0	0	61269	0	0			
0 0	0 0	0 0	0 0	0 0	0 0 0 0		0 0	0 0	0	0	0	29738	0	0			
0 0	0	0 0	0 0	0 0	0 0	0	0	0 0	0	0	0	2161	0	0			
0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0	0	2	0	0			
0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	0	0	0			
0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
0 0	0	0	0	0 0	0	0	0	0 0	0	0	0	0	0	0			
0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0			
0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	0	0	0			
0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	0	0	0			
0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	0	0	0			
0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	0	0	0			
0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0	0	U	0	0	0			
0. 51 0	24 00	611 2 5 0	0 0	956 0	0 0							957 5 ⁻ 234 240				0 0	I

Note that the true variance or energy densities are obtained by multiplying each number with the factor given under the keyword FACTOR.

A.2.10 Space-varying wind field

This feature has been made available as a special feature in D-Waves. It can not (yet) be switched on in the WAVE-GUI. The user can include this functionality by adding the keyword Meteofile in the MDW-file. The keyword should specify the file containing the space-varying wind data. If one wishes to specify wind fields that vary in space but are constant in time, one should simply incorporate the same wind field data block twice in one file. This generates a wind field that is constant in time.

Remarks:

- The keyword Meteofile can be added both in Datagroup General as in Datagroup Domain. When the keyword is added in Datagroup General, the wind will be incorporated in all domains. When the keyword is added in Datagroup Domain, the wind will be incorporated in that domain only.
- The Meteofile may occur more than once in the MDW-file to specify multiple sets of meteorological data (also within a Datagroup).

Example 1

If one would like to add two meteofiles containing an x-component and y-component for spacevarying wind, respectively, and apply the wind to all domains of the WAVE simulation, one should add them to Datagroup *General* as follows:

```
[WaveFileInformation]
FileVersion = 02.00
[General]
ProjectName = Siu-Lam
ProjectNr = 001
Description = Tutorial Delft3D-WAVE
Description = Siu Lam model
Description = SWAN wave model using a curvilinear grid
OnlyInputVerify = false
SimMode = quasi-stationary
DirConvention = nautical
ReferenceDate = 2005-10-01
ObstacleFile = obst_data_keyw.obs
MeteoFile = xwind.wnd
MeteoFile = ywind.wnd
[TimePoint]
```

```
. . . .
```

Example 2

If one would like to add the same meteorological files, but apply them only in the domain with grid *siu_lam_coarse.grd*, one should add them to Datagroup *Domain* as:

```
[WaveFileInformation]
   FileVersion
                               = 02.00
[General]
                          = Siu-Lam
   ProjectName
   ProjectNr
                              = 002
   Description = Tutorial Delft3D-WAVE
Description = Siu Lam model, 2 domains
Description = SWAN wave model using 2 d
OnlyInputVerify = false
                               = SWAN wave model using 2 curvilinear grids
   SimMode
                              = quasi-stationary
   DirConvention = nautical
ReferenceDate = 2005-10-
ObstacleFile = obst dat.
                               = 2005-10-01
   ObstacleFile
                               = obst_data_keyw.obs
[TimePoint]
```

. . . .

• • • •		
[Domain]		
Grid	=	siu_lam_coarse.grd
BedLevel	=	siu_lam_coarse.dep
DirSpace	=	circle
NDir	=	36
StartDir	=	0.00000000000000000000000e+000
EndDir	=	0.0000000000000000000000e+000
FreqMin	=	5.00000074505806000e-002
FreqMax	=	1.0000000000000000000000e+000
NFreq	=	24
Output	=	true
MeteoFile	=	xwind.wnd
MeteoFile	=	ywind.wnd
[Domain]		-
Grid	=	siu_lam_fine.grd
BedLevel	=	siu_lam_fine.dep
DirSpace	=	circle
NDir	=	36
StartDir	=	0.0000000000000000000000e+000
EndDir	=	0.0000000000000000000000e+000
FreqMin	=	5.00000074505806000e-002
FreqMax	=	1.000000000000000000000000e+000
NFreq	-	24
Output	=	true
[Boundary]		
-		

Remark:

When applying space-varying wind in only one or some of the domains, the user should be aware of the fact that the transition in wind forcing from one domain to the other may be not smooth.

In many cases the space varying wind data is provided by a meteorological station. This data is often defined on a different grid than the computational grid used in D-Waves. Translating these files into files defined on the (curvilinear) grid of the computational engine is often a lengthy process and can result in huge files. This special feature facilitates the reading of the meteorological data on its own grid and interpolates the data internally to the grid of D-Waves.

D-Waves can handle wind data on several different types of grids:

- 1 Space-varying wind on the computational (SWAN) grid
- 2 Space-varying wind on an equistant grid
- 3 Space-varying wind on a curvilinear grid
- 4 Space-varying wind on a Spiderweb grid

For these types of meteorological input, fixed formats have been set-up, that completely define a dataset. This form of meteorological input is also used by Delft3D-FLOW, see (Deltares, 2024b). In Delft3D-FLOW, also the atmospheric pressure is read from the meteorological files and used in the simulation. This is not (yet) available in D-Waves. In the following sections, generic descriptions of the formats of the meteorological input types are given. In these descriptions the atmospheric pressure is also considered. This is not relevant for D-Waves and may be excluded. For *Space-varying wind on the computational (SWAN) grid*, both x_wind, y_wind and air_pressure are given in one file. Similarly, for *Space-varying wind on a Spiderweb grid*, both wind_speed, wind_from_direction and p_drop (atmospheric pressure drop) are specified in one file. This format must also be used for a D-Waves simulation, for which the atmospheric pressure (drop) is then not used.

A.2.10.1 Space-varying wind on the computational (SWAN) grid

File contents	Time-series for space varying wind velocity components (east-west and south-north) and atmospheric pressure, defined on the compu- tational grid. The file consists of a header, followed by datablocks containing the wind and pressure fields at times specified using a standardised time definition above each datablock. The header spec- ifies the type of file and the input it contains using a number of key- words. The keywords are case insensitive and the order of the key- words is not fixed.
Filetype	ASCII or binary.
File format	Free formatted or unformatted, keyword based.
Filename	<name.wnd></name.wnd>
Generated	Some offline program.

Header description:

Keywords	Value	Description
FileVersion	1.03	version of file format
Filetype	meteo_on_computational_grid	meteo input on computa- tional grid
NODATA_value	free	value used for input that is to be neglected
n_quantity	3	number of quantities speci- fied in the file
quantity1	x_wind	wind in x -direction
quantity2	y_wind	wind in y -direction
quantity3	air_pressure	air pressure
unit1	m s-1	unit of quantity1, me- ters/second
unit2	m s-1	<pre>unit of quantity2, me- ter/second</pre>
unit3	Pa or	unit of quantity3, Pa or
	mbar	millibar

Time definition and data block description

Keywords	Value	Description
Time	fixed format described below	time definition string

The time definition string has a fixed format, used to completely determine the time at which a dataset is valid. The time definition string has the following format:

TIME minutes/hours since YYYY-MM-DD HH:MM:SS TIME ZONE, e.g.

```
360 minutes since 2008-07-28 10:55:00 +01:00
```

The format of the string is completely fixed. No extra spaces or tabs can be added between the different parts of the definition. The time definition is followed by the datablock of input values corresponding to the specified time. The data block consists of three subsequent blocks containing the velocity component in M-direction, the velocity component in N-direction and the atmospheric pressure, respectively. All three quantities are given for *Nmax* by *Mmax* points, where the first value in the dataset corresponds to cell (1, 1) on the grid. Every next line in the dataset then corresponds to a row on the grid. The time definition and the data block — for all three quantities — are repeated for each time instance of the time-series.

File version and conversion

The current description holds for FileVersion 1.03. The table below shows the latest modifications in the file format (and version number).

FileVersion	Modifications	
1.03	No changes for this meteo input type, but for the meteo types <i>meteo_on_equidistant_grid</i> and <i>meteo_on_curvilinear_grid</i>	
1.02	No changes for this meteo input type, but for the meteo type <i>me-teo_on_spider_web_grid</i>	
1.01	Changed keyword MeteoType to FileType	
	Changed fixed value of input type (Keyword Filetype) from <i>Svwp</i> to <i>meteo_on_computational_grid</i> (<i>meteo_on_flow_grid</i> is also allowed)	

Restrictions:

- ♦ Keywords are followed by an equal sign '=' and the value of the keyword.
- When a keyword has value *free* the value of this keyword is free to choose by the user. When only one value is given for a keyword, this keyword has a fixed value and when 2 or more options are shown, the user can choose between those values.
- ◇ Times must be specified exactly according to the time definition. See the examples shown in this section.
- ♦ The contents of the file will not be checked on its domain.
- The wind components are specified at the cell centres (water level points) of the computational grid.
- Input items in a data block are separated by one or more blanks (free formatted file only).

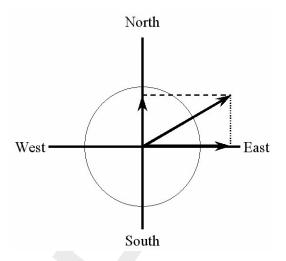


Figure A.1: Definition wind components for space varying wind

Remarks:

- The time definition in the meteorological file contains the number of minutes or hours since a reference data and time in a certain time zone. The reference time and time zone may differ from those of the simulation. The computational engine will search in the meteo file for the simulation time and interpolate between neighbouring times if necessary. Possible differences in time zone will be accounted for by shifting the meteo input data with the difference. The reference times within the time definition string may vary in a meteo file, i.e. it is possible to attach new input with a different reference time, behind the last data block.
- Comments can be added after #'s.

Example

Model area of 25 * 33 grid points (Mmax = 25; Nmax = 33). The input data is printed in Courier, comments are printed behind #'s.

```
Time = 0.0 minutes since 2008-09-20 10:30:00 +01:00
                                                                # Time definition
{33 records with 25 values each}
                                                                # Wind component west to east
{33 records with 25 values each}
                                                                # Wind component south to north
{33 records with 25 values each}
                                                                # Atmospheric pressure
                                                                # Time definition
Time = 340.0 minutes since 2008-09-20 10:30:00 +01:00
{33 records with 25 values each}
                                                                # Wind component west to east
{33 records with 25 values each}
                                                                # Wind component south to north
{33 records with 25 values each}
                                                                # Atmospheric pressure
Time = 600.0 minutes since 2008-09-20 10:30:00 +01:00
                                                                # Time definition
{33 records with 25 values each}
                                                                # Wind component west to east
{33 records with 25 values each}
                                                                # Wind component south to north
                                                                # Atmospheric pressure
{33 records with 25 values each}
Time = 1240.0 minutes since 2008-09-20 10:30:00 +01:00
                                                                # Time definition
{33 records with 25 values each}
                                                                # Wind component west to east
{33 records with 25 values each}
                                                                # Wind component south to north
{33 records with 25 values each}
                                                                # Atmospheric pressure
```

Remarks:

♦ To obtain the wind direction according to the nautical convention, the wind direction is

reversed.

The wind is specified in terms of its components along the west-east (x_wind) and south-north (y_wind) co-ordinate system, see Figure A.1. These definitions differ from the nautical convention (used for uniform wind), which is specified relative to true North, see Figure A.2.

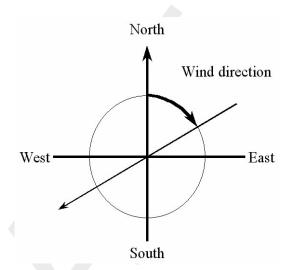


Figure A.2: Definition sketch of wind direction according to Nautical convention

A.2.10.2	Space-varying wind on an equistant grid		
	File contents	Time-series of a space varying wind and atmospheric pressure de-	
		fined on an equidistant (Cartesian or spherical) grid.	
	File format	Free formatted or unformatted, keyword based.	
	Generated	Some offline program.	

Remark:

♦ The keywords are case insensitive.

Header description for the wind velocity files:

Keywords	Value	Description
FileVersion	1.03	version of file format
Filetype	meteo_on_equidistant_grid	meteo input on equidistant grid
NODATA_value	free	value used for input that is to be neglected
n_cols	free	number of columns used for wind datafield
n_rows	free	number of rows used for wind datafield
grid_unit	m <i>or</i> degree	unit of distances on the grid in both x - and y -direction

Keywords	Value	Description
x_llcorner	free	x-coordinate of lower left corner of lower left grid cell (in units specified in grid_unit
y_llcorner	free	y-coordinate of lower left corner of lower left grid cell (in units specified in grid_unit
x_llcenter	free	x-coordinate of centre of lower left grid cell (in units specified in grid_unit
y_llcenter	free	y-coordinate of centre of lower left grid cell (in units specified in grid_unit
dx	free	gridsize in <i>x</i> -direction in units specified in grid_unit
dy	free	<pre>gridsize in y-direction in units specified in grid_unit</pre>
n_quantity	1	number of quantities specified in the file
quantity1	x_wind <i>or</i>	the velocity component given in
	y_wind	unit unit1
unit1	m s-1	unit of quantity1: me- tre/second

The user must specify the location of the equidistant grid on which the meteorological data is specified. While the user can specify the meteorological grid by means of grid cell's corners or grid cell's centres, the meteorological data is always specified in the cell centre. If one has the location of the lower left corner of the lower left grid cell, one can specify the starting point of the grid using keywords x_llcorner and y_llcorner. If one has the location of the lower left grid cell, one should use the keywords x_llcenter and y_llcenter. Using the first option, the first data value is placed at (x_llcorner+ $\frac{1}{2}dx$, y_llcorner+ $\frac{1}{2}dy$), which is the cell centre of cell (1,1). Using the latter option, the first data value is placed at (x_llcenter, y_llcenter), which is again the cell centre of cell (1,1), i.e. the data values are always placed at the cell centres of the meteorological grid. Note that the lower left grid cell is defined to be the grid cell with index (1,1). When using the option of meteorological data on a separate curvilinear grid, the origin and orientation of the data set can be chosen freely with respect to the grid on which it is specified, see section A.2.10.3 for details.

Keywords	Value	Description
Time	fixed format described below	time definition string

The time definition string has a fixed format, used to completely determine the time at which a dataset is valid. The time definition string has the following format:

TIME minutes/hours since YYYY-MM-DD HH:MM:SS TIME ZONE, e.g.

360 minutes since 2008-07-28 10:55:00 +01:00

The format of the string is completely fixed. No extra spaces or tabs can be added between the different parts of the definition. The time definition is followed by the datablock of input values corresponding to the specified time. The data block contains values for the wind velocity in x- or y-direction for n_{cols} by n_{rows} points, starting at the top left point. The time definition and the data block are repeated for each time instance of the time-series.

The atmospheric pressure file

The header for the atmospheric pressure is similar to that of the wind velocity files, except for the following differences.

Keywords	Value	Description
quantity1	air_pressure	air pressure
unit1	Pa <i>or</i> mbar	unit of quantity1: Pascal or millibar

The specification of the time definition and the data block is fully conform the wind velocity files.

File version and conversion

The current description holds for FileVersion 1.03. The table below shows the latest modifications in the file format (and version number).

FileVersion	Modifications	
1.03	Use of keyword Value_pos to indicate the position of the lower left corner of the grid replaced by use of the combination of keywords:	
	x_llcorner and y_llcorner or	
	x_llcenter and y_llcenter	
1.02	No changes for this meteo input type, but for the meteo type <i>me-teo_on_spiderweb_grid</i>	
1.01	Changed keyword MeteoType to FileType	
	Changed fixed value of input type (Keyword Filetype) from ArcInfo to meteo_on_equidistant_grid	

Restrictions:

- ♦ The contents of the file will not be checked on its domain.
- ♦ Keywords are followed by an equal sign '=' and the value of the keyword.
- When a keyword has value *free*, the value of this keyword is free to choose by the user. When only one value is given for a keyword, this keyword has a fixed value and when 2 or more options are shown, the user can choose between those values.
- Times must be specified exactly according to the time definition. See the examples shown in this section.
- The atmospheric pressure file must use the same grid definition and time frame as the files for the wind velocity components.
- The unit of the meteo grid must be the same as the computational grid, i.e. both with grid_unit = [m] or both with grid_unit = [degree].
- ♦ Input items in a data block are separated by one or more blanks.
- The wind components are specified at the cell centres (water level points) of the numerical grid.
- The wind components are specified in the west-east (x_wind) and south-north directions (y_wind).

Remarks:

- The time definition in the meteo files contains the number of minutes or hours since a reference date and time in a certain time zone. The reference time and time zone may differ from those of the simulation. During a simulation the computational engine will search in the meteo file for the current simulation time and interpolate between neighbouring times if necessary. Possible differences in time zone will be accounted for by shifting the meteo input data. The reference times within the time definition string may vary in a meteo file, i.e. it is possible to attach new input with a different reference time, behind the last data block. Consecutive times must always be increasing in the input file.
- ♦ Comments can be added after pound signs (#). These are not read.

Example of a file containing wind in x-direction (west-east)

The data blocks in this example are the result of the following FORTRAN statements:

```
do j = nrows,1,-1
    write(out,*) (xwind(i,j),i=1,ncols)
enddo
```

The *x*-wind velocity file for a 3 (n_cols) by 4 (n_rows) grid has the following layout:

```
=
FileVersion
                   1.03
filetype
                   meteo_on_equidistant_grid
NODATA_value = -999.000
                   3
n_cols
              =
                    4
n_rows
               =
                   degree
grid_unit
               =
x_llcenter
               =
                    -12.000
y_llcenter
              =
                    48.000
                  0.12500
dx
              =
dy
               =
                    0.083333333
= 0.08333
n_quantity = 1
quantity1 = x_wind
unit1 = m s-1
      0.0 hours since 2008-01-15 04:35:00 +00:00
TIME =
2 3.0 3.6
3 4.5 2
2.2 1
       2.3
1.2 0.7 -0.4
TIME =
          6.0 hours since 2008-01-15 04:35:00 +00:00
-1.1 -2.3 -3.6
-3.2 0.8 1.1
 2.2 -1
       -1.6
 1.2 -0.7 -0.4
```

This results in an *x*-component of wind velocity given - in [m/s] - on a spherical, 3 by 4, equidistant grid, with grid sizes given by dx and dy (in degrees) and where the centre point of the lower left cell of the grid lies in (longitude, latitude) (-12.0, 48.0) on the globe. Data is given at two times: 0 and 6 hours since January 15th, 2008, 4:35 AM, in UTC+0.

A.2.10.3 Space-varying wind on a curvilinear grid

File contents	Time-series of a space varying wind and atmospheric pressure de-
	fined on a curvilinear (Cartesian or spherical) grid.
File format	Free formatted or unformatted, keyword based.
Generated	Some offline program.

Remark:

♦ The keywords are case insensitive.

Header description for the wind velocity files:

Keywords	Value	Description
FileVersion	1.03	version of file format
Filetype	meteo_on_curvilinear_grid	meteo input on curvilinear grid

Keywords	Value	Description
NODATA_value	free	value used for input that is to be neglected
grid_file	free.grd	name of the curvilinear grid file on which the data is specified
first_data_value	grid_llcorner <i>or</i> grid_ulcorner <i>or</i> grid_lrcorner <i>or</i> grid_urcorner	see example below
data_row	grid_row <i>or</i> grid_column	see example below
n_quantity	1	number of quantities specified in the file
quantity1	x_wind <i>or</i> y_wind	the velocity component given in unit unit1
unit1	m s-1	unit of quantity1: me- tres/second

Time definition and data block description for the wind velocity files

For a description of the time definition and data block see section A.2.10.2.

The atmospheric pressure file

For a description of the atmospheric file see section A.2.10.2.

File version and conversion

The current description holds for FileVersion 1.03. The table below shows the latest modifications in the file format (and version number).

FileVersion	Modifications		
1.03	Fixed bug in interpolation of data from meteo grid to computational grid: Conversion script mirrored data set erroneously. This was treated cor- rectly by meteo module. Fixed both the conversion script and the meteo module together: Required modification in meteo input file:		
	Change first_data_value = grid_llcorner into grid_ulcorner or vice versa		
	or		
	Change first_data_value = grid_Ircorner into grid_urcorner or vice versa		
1.02	No changes for this meteo input type, but for the meteo type <i>me-teo_on_spiderweb_grid</i>		
1.01	Changed keyword MeteoType to FileType		
	Changed keyword Curvi_grid_file to Grid_file		
	Changed fixed value of input type (Keyword Filetype) from <i>Curvi</i> to <i>meteo_on_curvilinear_grid</i>		

Restrictions:

- The restrictions for space varying wind and pressure on a separate curvilinear grid are the same as for space varying wind and pressure on an equidistant grid, described in section A.2.10.2. A difference is that the data values on the curvilinear grid are not specified in the cell centres, but in the grid points (cell corners).
- The unit of the meteo grid must be the same as the computational grid, i.e. both with grid_unit = [m] or both with grid_unit = [degree].

Remark:

The remarks for space varying wind and pressure on a separate curvilinear grid are the same as for space varying wind and pressure on an equidistant grid, described in section A.2.10.2.

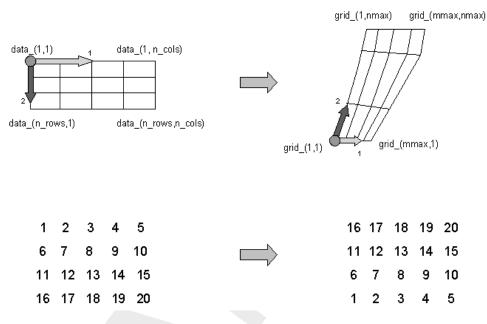


Figure A.3: Illustration of the data to grid conversion for meteo input on a separate curvilinear grid

Example:

A file for input of x-velocity (in west-east direction) on a 4 (n_rows) by 5 (n_cols) curvilinear grid, where the meteorogical data is mirrored vertically with respect to the grid, has the following layout:

Fil	eVer	sion		=	1.03
fil	etyp	е		=	<pre>meteo_on_curvilinear_grid</pre>
NOD	ATA_	valu	е	=	-999.000
gri	d_fi	le		=	curviwind.grd
fir	st_d	ata_	value	e =	grid_llcorner
dat	a_ro	W		=	grid_row
n_q	uant	ity		=	1
qua	ntit	y1		=	x_wind
uni	t1			=	m s-1
TIM	Е =		0.0	min	utes since 1993-06-28 14:50:00 -02:00
1	2	3	4	5	
6	7	8	9	10	
11	12	13	14	15	
16	17	18	19	20	
TIM	E =		600	.0 m	inutes since 1993-06-28 14:50:00 -02:00
1	2	3	4	5	
6	7	8	9	10	
11	12	13	14	15	
16	17	18	19	20	

This results in an *x*-component of velocity given - in [m/s] - on the curvilinear grid specified in file <curviwind.grd>. The data set will be mirrored such that the first value of the data (upper left corner, in the example '1') corresponds to the lower left corner of the grid (point (1,1)) and a row of data corresponds to a row on the grid, see Figure A.3. Data is given at two times: 0 and 600 minutes since June 28th, 1993, 14:50 PM, in UTC-2.

A.2.10.4 Space-varying wind on a Spiderweb grid

Cyclone winds are governed by a circular motion, combined with a cyclone track. This type of wind is generally very difficult to implement on a curvilinear grid. This feature facilitates the reading of the so-called Spiderweb files and interpolates the wind and pressure data internally to the computational grid. A special feature of the space varying wind and pressure on the Spiderweb grid is that it can be combined with one of the other meteorological input options described in this manual, i.e. to either uniform wind and pressure, or to one of the space varying wind and pressure options, see section A.2.10.

File contents	Time-series of a space varying wind and atmospheric pressure de- fined on a Spiderweb grid. This grid may be specified in Cartesian or spherical coordinates.		
File format	Free formatted or unformatted, keyword based.		
Generated	Some offline program.		

Remarks:

- ♦ The keywords are case insensitive.
- ♦ Space varying wind and pressure on a Spiderweb grid is added to other wind input and the wind fields are interpolated and combined in and around the cyclone.

Keywords	Value	Description	
FileVersion	1.03	version of file format	
Filetype	meteo_on_spiderweb_grid	meteo input on Spiderweb grid	
NODATA_value	free	value used for input that is to be neglected	
n_cols	free	number of gridpoints in angular direction	
n_rows	free	number of gridpoints in radial di- rection	
grid_unit	m <i>or</i>	unit of the Spiderweb grid	
	degree		
spw_radius	free	radius of the spiderweb given in units given by spw_rad_unit	
spw_rad_unit	m	unit of the Spiderweb radius	
spw_merge_frac	[0.0,1.0]	fraction of the Spiderweb radius where merging starts of the back- ground wind with the Spiderweb wind. Default is 0.5	
air_pressure	air_pressure_default_from	Both keyword and value are too	
_reference	_computational_engine	long to fit on one line.	
		Reference value related to p_drop is the default air pressure of the computional engine	

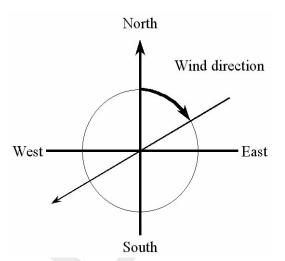


Figure A.4: Wind definition according to Nautical convention

Keywords	Value	Description	
	or free	or the value specified.	
		If missing, p_drop is extracted from the actual atmospheric pressure.	
n_quantity	3	number of quantities specified in the file	
quantity1	wind_speed	wind speed given in unit unit1	
quantity2	wind_from_direction	direction where the wind is com- ing from given in unit unit2	
quantity3	p_drop	drop in atmospheric pressure given in unit unit 3	
unit1	m s-1	unit of quantity1: me- tres/second	
unit2	degree	unit of quantity2: degrees	
unit3	Pa or	unit of quantity3: Pascal or	
	mbar	millibar	

Time definition and data block description

For a description of the time definition see section A.2.10.2.

Cyclone track information:

For each time in the time series of space varying wind and pressure on a Spiderweb grid, the position of the cyclone eye (and thus also the spiderweb grid) must be given, as well as the drop of atmospheric pressure in the cyclone eye.

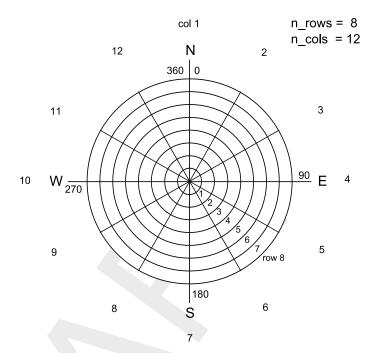


Figure A.5: Spiderweb grid definition

File version and conversion

The current description holds for FileVersion 1.03. The table below shows the latest modifications in the file format (and version number).

FileVersion	Modifications
1.03	No changes for this meteo input type
1.02	Changed the use of keyword n_rows and n_cols. The radius of the cyclone is divided in <i>n_rows</i> rings of width: spw_radius/n_rows [m] and the circle is divided in <i>n_cols</i> parts of $2\pi/n_cols$ [rad].
1.01	Changed keyword MeteoType to FileType
	Changed fixed value of input type (Keyword Filetype) from Spider- web to meteo_on_spiderweb_grid

Restriction:

♦ The restrictions for space varying wind and pressure on a Spiderweb grid are the same as for space varying wind and pressure on an equidistant grid, described in section A.2.10.2.

Remarks:

- The remarks for space varying wind and pressure on a separate curvilinear grid are the same as for space varying wind and pressure on an equidistant grid, described in section A.2.10.2.
- The Spiderweb grid is circular and the definitions of the number of rows n_rows and the number of columns n_cols is therefore different then for the other meteo input formats. For the Spiderweb grid, the number of rows determines the grid size in radial direction. The number of columns defines the grid size in angular direction. See Figure A.5.

The wind is specified according to the nautical convention, i.e. wind from the true North has direction zero and the wind turns clockwise with an increasing angle. See Figure A.4.

Example:

A file for input of space varying wind and pressure on a 5x3 Spiderweb grid, has the following layout:

FileVersion = 1.03 filetype = meteo_on_spiderweb_grid NODATA_value = -999.000n_cols = 3 n_rows = 5 grid_unit = degree = 600000.0 spw_radius = m spw_rad_unit air_pressure_reference = air_pressure_default_from_computational_engine n_quantity = 3 quantity1 = wind_speed quantity2 = wind_from_direction quantity3 = p_drop unit1 = m s-1 = degree unit2 = Pa unit3 = 0.0 hours since 1997-07-14 03:00:00 -06:00 TIME x_spw_eye = 115.1 y_spw_eye = 18.9 $p_drop_spw_eye = 5300.0$ 1.38999 1.38261 1.28251 1.34931 1.38315 1.22571 1.31214 1.32451 1.3121 1.86592 24912 1.27215 2.87732 1.38999 1.00 1.43899 60.0000 28.7500 20.0000 53.7500 50.2400 2.21519 270.0000 31.2500 65.0000 .2400 62.0000 5294.490 13.460 5140.020 5294.730 5242.530 TIMT 60.2400 81.5200 43.1200 5156.240 5264.020 5411.210
 5294.730
 5285.760

 5242.530
 5156.190

 TIME
 5235.250 5124.240 1.0 hours since 1997-07-14 03:00:00 -06:00 = x_spw_eye = 114.8 y_spw_eye = 18.8 $p_drop_spw_eye = 5250.0$ 1.35763 1.35763 1.35763 1.35763 1.87273 2.24784 1.92214 2.47836 2.17266 1.87662 2.72116 2.82375 2.24146 346.5200 282.1400 1.26585 2.38722 290.6400 159.0000 20.2400 342.3200 10.7500 25.5300 36.4500 61.8400 49.5250 5214 520 81.6200 45.5100 56.7500 75.1300 5104.490 5287.240 5314.520 5285.760 5124.240 5252.420 5152.460 5247.040 5222.020 5242.020 5223.520 5475.210 5244.270 5211.210 4998.110

This results in the following set of meteo data. Velocities given in [m/s] and pressure drops in [Pa] on a Spiderweb grid which is given in spherical coordinates (grid_unit = degree). The cyclone and spiderweb grid have a radius of 600 km. The grid is 5x3, which means the radius is divided in five parts of 120 km and the 360 degrees are divided in 3 parts of 120 degrees each. Wind speeds, wind directions and pressure drops are given at two times: 0 and 1.0 hour since July 14th, 1997, 03:00 AM, in UTC-6. Between these two times the cyclone eye moves from (longitude, latitude) (115.1, 18.9) to (114.8, 18.8) on the globe and the pressure drop in the cylcone eye decreases from 5300.0 [Pa] to 5250.0 [Pa].

B Definition of SWAN wave variables

In SWAN a number of variables, mostly related to waves are used in input and output. The definitions of these variables are conventional for the most part.

HSIGN significant wave height (H_s in [m]), defined as:

$$H_s = 4\sqrt{\iint E(\omega,\theta) \ d\omega d\theta}$$

TM01

where $E(\omega, \theta)$ is the variance density spectrum

mean absolute wave period (in s) of $E(\omega, \theta)$, defined as:

$$T_{m01} = 2\pi \left(\frac{\iint \omega E(\sigma,\theta) \, d\sigma d\theta}{\iint E(\sigma,\theta) \, d\sigma d\theta}\right)^{-1} = 2\pi \left(\frac{\iint \omega E(\sigma,\theta) \, d\omega d\theta}{\iint E(\sigma,\theta) \, d\omega d\theta}\right)^{-1}$$

where ω is the absolute radian frequency, determined by the Doppler shifted dispersion relation.

DIR

DSPR

mean wave direction (in °, Cartesian or Nautical convention), as conventionally defined (Kuik *et al.*, 1988).

$$[DIR] = \arctan\left(\frac{\int \sin(\theta) E(\sigma, \theta) \, d\sigma d\theta}{\int \cos(\theta) E(\sigma, \theta) \, d\sigma d\theta}\right)$$

RTP relative peak period (in s) of $E(\sigma)$ (equal to absolute peak period in the absence of currents)

the one-sided directional width of the spectrum (directional spreading or directional standard deviation, in 0), defined as:

$$DSPR^{2} = \left(\frac{180}{\pi}\right)^{2} \int_{0}^{2\pi} \left\{2\sin\left(\frac{\theta - \bar{\theta}}{2}\right)\right\}^{2} D(\theta) \ d\theta$$

and computed as conventionally for pitch-and-roll buoy data (Kuik *et al.* (1988); this is the standard definition for WAVEC buoys integrated over all frequencies):

$$\left(DSPR \ \frac{\pi}{180}\right)^2 = 2\left\{1 - \left(\left(\int \sin(\theta) \frac{\int E(\sigma,\theta) \ d\sigma}{\int E(\sigma) \ d\sigma} d\theta\right)^2 + \left(\int \cos(\theta) \frac{\int E(\sigma,\theta) \ d\sigma}{\int E(\sigma) \ d\sigma} d\theta\right)^2\right)^{1/2}\right\}$$

MS

As input to SWAN in the commands BOUNDPAR and BOUNDSPEC the directional distribution of incident wave energy is: $D(\theta) = A \{\cos(\theta)\}^{[MS]}$ at all frequencies. [MS] is not necessarily an integer number.

[MS] is, for this directional distribution, related to the one-sided directional spread of the waves (DSPR) as follows:

[MS]	dspr (in $^\circ$)
1.	37.5
2.	31.5
3.	27.6
4.	24.9
5.	22.9
6.	21.2
7.	19.9
8.	18.8
9.	17.9
10.	17.1
15.	14.2
20.	12.4
30.	10.2
40.	8.9
50.	8.0
60.	7.3
70.	6.8
80.	6.4
90.	6.0
100.	5.7
200	4.0
400	2.9
800	2.0

DISSIP

SIP energy dissipation per unit time due to the sum of bottom friction, whitecapping and depth induced wave breaking (in W/m² of m²/s, depending on command SET)

WLEN the mean wavelength,

$$WLEN = 2\pi \left(\frac{\int k^p E(\sigma, \theta) \ d\sigma d\theta}{\int k^{p-1} E(\sigma, \theta) \ d\sigma d\theta} \right)^{-1}$$

see command QUANTITY (where $p=1 \mbox{ is default})$ STEEPNESS wave steepness, computed as:

$$\mathsf{STEEPNESS} = \frac{\mathsf{HSIGN}}{\mathsf{WLEN}}$$

Qb fraction of breakers [-] in expression of Battjes and Janssen (1978), see section 2.1.

TRANSP energy transport with components $P_x = \iint \rho g c_x E(\sigma, \theta) \, d\sigma d\theta$ and $P_y = \iint \rho g c_y E(\sigma, \theta) \, d\sigma d\theta$ with x and y of the problem co-ordinate system, except in the case of output with BLOCK command in combination with command FRAME, where x and y relate to the x-axis and y-axis of the output frame.

- VEL current velocity with components in x and y direction of the problem co-ordinate system, except in the case of output with BLOCK command in combination with command FRAME, where x and y relate to the x-axis and y-axis of the output frame.
- FORCE wave induced force per unit surface area (gradient of the radiation stresses) with x and y of the problem co-ordinate system, except in the case of output with BLOCK command in combination with command FRAME, where x and y relate to the x-axis and y-axis of the output frame.

$$F_x = -\frac{\partial S_{xx}}{\partial x} - \frac{\partial S_{xy}}{\partial y}, \quad \text{and} \quad F_y = -\frac{\partial S_{yx}}{\partial x} - \frac{\partial S_{yy}}{\partial y}$$

where S is the radiation stress tensor:

$$S_{xx} = \rho g \int \left(n \cos^2 \theta + n - \frac{1}{2} \right) E \, d\sigma d\theta$$
$$S_{xy} = S_{yx} = \rho g \int n \sin \theta \cos \theta E \, d\sigma d\theta$$
$$S_{yy} = \rho g \int \left(n \sin^2 \theta + n - \frac{1}{2} \right) E \, d\sigma d\theta$$

and n is the ratio of group velocity over phase velocity.

URMS root-mean-square value of the orbital motion near the bottom

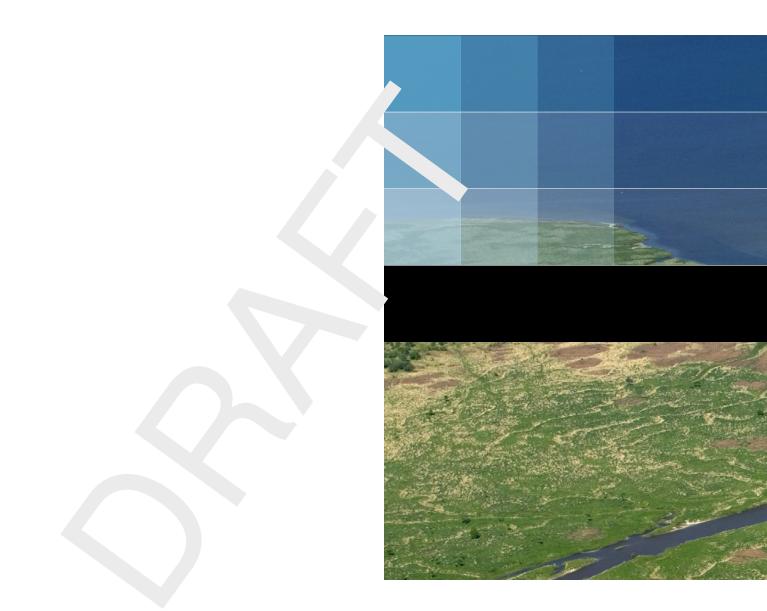
UBOT root-mean-square value of the maximum of the orbital motion near the bottom $U_{bot} = \sqrt{2} U_{rms}$

LEAK numerical loss of energy equal to $c_{\theta}E(\omega, \theta)$ across boundaries $\theta_1 = [\text{dir1}]$ and $\theta_2 = [\text{dir2}]$ of a directional sector (see command CGRID)

- SETUP the elevation of mean water level (relative to still water level) induced by the gradient of the radiation stresses of the waves
- TPS Smoothed Peak wave period. This value is obtained as the maximum of a parabolic fitting through the highest bin and two bins on either side of the highest one of the discrete wave spectrum. This 'non-discrete' or 'smoothed' value is a better estimate of the 'real' peak period compared to the quantity RTP.

Cartesian direction convention: the direction is the angle between the vector and the positive x-axis, measured counter-clockwise (the direction where the waves are going to or where the wind is blowing to).

Nautical direction convention: the direction of the vector from geographic North measured clockwise $+ 180^{\circ}$ (the direction where the waves are coming from or where the wind is blowing from).


C Example of MDW-file Siu-Lam

In this appendix the MDW-file for the Siu Lam case is provided <siu.mdw>. Generated by the WAVE-GUI 4.94.00:

[WaveFileInformation]		
FileVersion	=	02.00
[General]		
ProjectName	=	Siu-Lam
ProjectNr		001
Description		Tutorial Delft3D-WAVE
Description		Siu Lam model
Description	=	SWAN wave model using a curvilinear grid
OnlyInputVerify		false
SimMode		stationary
DirConvention		nautical
ReferenceDate		2005-10-01
ObstacleFile		<pre>siu_lam_obstacles.obs</pre>
WindSpeed		2.000000e+001
WindDir	=	2.5500000e+002
[TimePoint]		1 0000000 1000
Time	=	1.0800000e+003
WaterLevel		-1.000000e+000
XVeloc		0.000000e+000
YVeloc	=	0.000000e+000
[TimePoint] Time	<u> </u>	1.2600000e+003
WaterLevel	7	0.000000e+000
XVeloc		0.0000000e+000
YVeloc	_	0.0000000e+000
[TimePoint]		
Time	_	1.4400000e+003
WaterLevel	=	1.5000000e+000
XVeloc	=	0.000000e+000
YVeloc	=	0.000000e+000
[Constants]		
WaterLevelCorrection	=	0.000000e+000
Gravity	=	9.8100004e+000
WaterDensity	=	1.0250000e+003
NorthDir	=	3.000000000
MinimumDepth	=	5.000001e-002
[Processes]		
GenModePhys	=	
WaveSetup		false
Breaking		true
BreakAlpha	=	1.000000e+000
BreakGamma	=	7.3000002e-001
Triads Triadelloba	_	false
TriadsAlpha TriadsBeta	=	1.0000000e-001 2.2000000e+000
BedFriction		jonswap
BedFricCoef	_	6.7000002e-002
Diffraction		false
DiffracCoef		2.0000000e-001
DiffracSteps		5
DiffracProp	=	true
WindGrowth		true
WhiteCapping	=	Komen
Quadruplets	=	true
Refraction	=	true
FreqShift		true
WaveForces	=	dissipation
[Numerics]		
DirSpaceCDD	=	5.000000e-001
FreqSpaceCSS	=	5.0000000e-001

= 2.000000e - 002RChHsTm01 RChMeanHs RChMeanTm01 PercWet MaxIter = 4 [Output] TestOutputLevel = 0 TraceCalls = false UseHotFile = false WriteCOM = false LocationFile WriteTable = true WriteSpec1D = true WriteSpec2D = true [Domain] Grid BedLevel DirSpace NDir = 36 StartDir EndDir FreqMin FreqMax NFreq = 24 = true Output [Boundary] Name Definition Orientation = west SpectrumSpec SpShapeType = gauss PeriodType = peak DirSpreadType PeakEnhanceFac GaussSpread DistanceDir CondSpecAtDist WaveHeight = Period Direction DirSpreading CondSpecAtDist WaveHeight Period Direction DirSpreading

= 2.0000000e-002 = 2.0000000e-002 = 9.8000000e+001 = siu.loc = siu_lam.grd = siu_lam.dep = circle = 0.0000000e+000= 0.0000000e+000 = 5.000001e-002= 1.0000000e+000= Boundary 1 = orientation = parametric = degrees = 3.3000000e+000 = 3.3000000e+000 = counter-clockwise = 1.500000e+003 0.0000000e+000 = 5.000000e+000 = 2.5500000e+002 = 4.0000000e+000= 9.0000000e+003= 1.0000000e+000 = 5.0000000e+000 = 2.5500000e+002 = 4.0000000e+000

Deltares systems

PO Box 177 2600 MH Delft Boussinesqweg 1 2629 HV Delft The Netherlands +31 (0)88 335 81 88 software@deltares.nl www.deltares.nl/software