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List of Symbols

List of Symbols

Symbol Unit Description

ĥj m Hydraulic radius at face j

J (k) − Set of faces j of cell k

N (k) − Set of nodes i of cell k

n⃗j − Normal vector on face j of an cell, outward direction is positive

u⃗j m/s Complete velocity vector at the velocity point on edge j

x⃗ζk - the coordinates of cell-center k

ζk m Water level at circumcenter of cell k

ζuj
m Water level at the velocity point uj

Auj
m2 Flow area at face j

blk m Bed level at cell k

hk m Water depth at cell k (hk = ζk − blk)

i − Node counter

j − Face counter

k − Cell counter

L(j) − Left cell of face j, giving some orentation to the face

l(j) − Left node of face j, giving some orentation to the face

R(j) − Right cell of face j, giving some orentation to the face

r(j) − Right node of face j, giving some orentation to the face

sj,k − Orientation of face j to cell k

uj m/s Face-normal velocity

vj m/s Tangential velocity component at cell face j

Vk m3 Volume of water column at cell k

wuj
m Width of face j

zi m Bed level at node i

Aej − Explict part of the discretization of the advection and diffusion

Aij − Implict part of the discretization of the advection and diffusion

bl1j m Bed level at left node of face j

bl2j m Bed level at right node of face j
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1 Problem specification

The specification of a problem to be run should resemble the procedure for Delft3D-FLOW,
i.e., through a Master Definition Flow file. The Master Definition Unstructured (MDU) file
standards are evidently not equal to those for Delft3D (yet?).

1.1 The master definition file
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2 Data structures

The data structures used for flow simulations on unstructured meshes are fundamentally dif-
ferent from those on curvilinear meshes, which fit in standard rank-2 arrays. Section 2.1 con-
tains the conceptual hierarchy of mesh and flow data. Section 2.2 contains implementation
details of the variables and IO-routines available.

2.1 Hierarchy of unstructured nets

net node

net link (2D)

net link (1D)

pressure points: 2D flow node circumcenter/1D flow node

flow link

netcell/flow node (2D)

netcell/flow node (1D)

1. Net (domain discretization)

2. Flow data (1D+2D)

(1..NUMK)

(1..NUML1D)

(NUML1D+1..NUML)

(1..NDX2D=NUMP)

(NDX2D+1..NDXI)

boundary flow node (NDXI+1..NDX)

(1..LNX1D)

(LNX1D..LNXI)

(LNXI+1..LNX1DBND)

(LNX1DBND+1..LNX)

1D internal
2D internal
1D open bnd
2D open bnd

2.2 Implementation details of unstructured nets

2.3 Improve use of cache

2.3.1 Improved cache use by node renumbering

The order of nodes in unstructured nets can be arbitrary, as opposed to structured nets, where
neighbouring grid points generally lie at offsets ±1 and ±Nx in computer memory.

The order of net nodes in memory should not affect the numerical outcomes in any way, so it
is safe to apply any permutation to the net- and/or flow nodes. A permutation that puts nodes
that are close to each other in the net also close to each other in memory likely improves
cache effiency.

The basic problem is: given a set of nodes and their adjacency matrix, find a permutation for
the nodes such that, when applied, the new adjacency matrix has a smaller bandwidth. The
Reverse Cuthill–McKee (RCM) algorithm is a possible way to achieve this.

Net nodes can be renumbered, with the net links used as adjacency information. This is only
done upon the user’s request (Operations > Renumber net nodes), since net node ordering
does not affect the flow simulation times very much. For flow nodes it is done automatically, as
part of flow_geominit(). It can be switched off in Various > Change geometry settings.
Technical detail: for true efficiency the flow links should be ordered approximately in the same
pace as the flow nodes. Specifically: lne is reordered, based on its first node lne(1,:).
Other code parts require (assume) that net links are indexed identical to flow links, so kn is
reordered in the same way as lne was.

Deltares 3 of 207



DRAF
T

D-Flow Flexible Mesh, Technical Reference Manual

4 of 207 Deltares



DRAF
T

3 Unstructured grid generation

The grid generation parts in D-Flow FM are standard grid generation techniques for either
curvilinear grids, triangular grids or 2D networks. D-Flow FM does not generate a hybrid
unstructured net of arbitrary polygons at once, but facilitates easy combination of beforemen-
tioned grids and nets in subdomains. It does offer grid optimization over the entire hybrid net,
such as orthogonalization, automated removal of small cells and more.

Most of this functionality will be moved to RGFGRID.

3.1 Curvilinear grids

Curvilinear grid generation is done by (old) code from RGFGRID, within polygons of splines.

3.2 Triangular grids

Unstructured triangular grid generation is done with the Triangle code by J.R. Shewchuk from
Berkely. This is an implementation of Delaunay triangulation. In RGFGRID, this will be re-
placed by SEPRAN routines.

3.3 2D networks

Two-dimensional (SOBEK-like) networks are interactively clicked by the user.

3.4 Grid optimizations

There are two grid optimization procedures: orthogonalization and smoothing. They will be
explained in the following sections.

3.5 Grid orthogonalization

D-Flow FM adopts a staggered scheme for the discretization of the two-dimensional shallow
water equations. Due to our implementation of the staggered scheme, the computational grid
needs to be orthogonal.

Definition 3.5.1. We say that a grid is orthogonal if its edges are perpendicular to the edges
of the dual grid.

To this end, we will firstly construct a local grid mapping x(ξ, η) attached to some node i, see
Figure 3.1. Since the ξ and η grid lines are aligned with the primary and dual edges, the grid
will be orthogonal if the grid mapping satisfies the relation

∂x

∂ξ
•
∂x

∂η
= 0, (3.1)

A grid mapping that satisfies Equation (3.1), also satisfies the scaled Laplace equation

∂

∂ξ

(
a
∂x

∂ξ

)
+

∂

∂η

(
1

a

∂x

∂η

)
= 0, (3.2)

∇ •

(
a
∂x

∂ξ
,
1

a

∂x

∂η

)T

= 0 (3.3)
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η

ξ

Figure 3.1: Local grid mapping x(ξ, η) around a node for orthogonalization; ξ-lines are
dashed; the dual cell is shaded

where a is the aspect ratio defined by:

a =

∥∥∥∥∂x∂η
∥∥∥∥∥∥∥∥∂x∂ξ
∥∥∥∥ . (3.4)

Equation (3.2) can be written in the following form, after integration over the controle volume
Ω and applying the Divergence theorem:∮

S

(
a
∂x

∂ξ
,
1

a

∂x

∂η

)T

• n dS =

∮
S

(
a
∂x

∂ξ
nξ +

1

a

∂x

∂η
nη

)
dS = 0, (3.5)

where S is the boundary of the control volume Ω in (ξ, η) space and n = (nξ, nη)
T is the

outward orthonormal vector.

3.5.1 Discretization

For the description of the discretization of Equation (3.4) and Equation (3.5) the following
nomenclature is used:

Definition 3.5.2. Jint is the set of internal primary edges connected to node i and x0 and
x1j are the coordinates of that node and of the neighboring node connected through edge j,
respectively. Furthermore, xLj

and xRj
are the left and right neighboring cell-circumcentre

coordinates, see Figure 3.2a.

Definition 3.5.3. Jbnd is the set of boundary edges (nonempty if node i is on the grid bound-
ary only), xR∗

j
are the coordinates of a virtual node and xbcj are boundary node coordinates,

see Figure 3.2b.

6 of 207 Deltares



DRAF
T

Unstructured grid generation

xLj
= x(1

2
, 1
2
)

x0 = x(0, 0)

x1j = x(1, 0)

xRj
= x(1

2
,−1

2
)

(a) Internal edge

xLj

x1j

x0

xR∗
j

xbcj

(b) Boundary edge; xbcj are the coordinates of a
node projected onto the grid boundary, xR∗

j
are

virtual node coordinates

Figure 3.2: Part of the control volume that surrounds edge j (dark shading) and the nodes
involved

The discretizations of the aspect ratio for edge j, Equation (3.4), with ∆ξ = ∆η = 1 yields

aj ≈
∥∥xLj

− xRj

∥∥
∆η

∆ξ

∥x1j − x0∥
=

∥∥xLj
− xRj

∥∥
∥x1j − x0∥

, j ∈ Jint (3.6)

and the discretization of Equation (3.5) yields

∑
j∈Ji

∥xRj
− xLj

∥
∥x1j − x0∥

(x1j − x0) +

∑
j∈Je

{
1

2

∥xR∗
j
− xLj

∥
∥x1j − x0∥

(x1j − x0) +
1

2

∥x1j − x0∥
∥xR∗

j
− xLj

∥
(xR∗

j
− xLj

)

}
= 0,

(3.7)

where the second summation in Equation (3.7) accounts for boundary edges.

The virtual node xR∗
j

is constructed by extrapolation from the circumcenter and boundary
nodes, using Equation (3.8) to project the left cell-circumcenter orthogonally onto the grid
boundary xbcj :

xbcj = x0 +
(x1j − x0) • (xLj

− x0)

∥x1j − x0∥2
(x1j − x0). (3.8)

xR∗
j
= 2xbcj − xLj

, (3.9)

Remark 3.5.4. We will always assume that the grid is on the left-hand side of a boundary
edge.

Finally, Equation (3.7) can be put in the following form

∑
j∈Ji

aj (x1j − x0) +
∑
l∈Le

{
1

2
aj (x1j − x0) +

1

2
∥x1j − x0∥nj,

}
= 0,
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(3.10)

where nj =
xR∗

j
−xLj

∥xR∗
j
−xLj

∥ is the outward normal at edge j and aj is the aspect ratio of edge

j, i.e.

aj =


∥xRj

− xLj
∥

∥x1j − x0∥
, j ∈ Ji,

∥xR∗
j
− xLj

∥
∥x1j − x0∥

, j ∈ Je.

(3.11)

3.5.2 Curvilinear-like discretization

The previous formulation may lead to distorted quadrilateral grids. This is remedied by mim-
icking a curvilinear formulation in the quadrilateral parts of the grid. Then, in Equation (3.10)
the aspect ratio of Equation (3.11) is replaced by

aj =


4 ∥xRj

− xLj
∥

2∥x1j − x0∥+ ∥x2Rj
− x1Rj

∥+ ∥x2Lj
− x1Lj

∥
, j ∈ Jint,

2 ∥xR∗
j
− xLj

∥
∥x1j − x0∥+ ∥x2Lj

− x1Lj
∥
, j ∈ Jbnd,

(3.12)

where the nodes involved are depicted in Figure 3.3.

x1Rj = x(0,−1)

x1Rj = x(0, 1)

x0 = x(0, 0)

xLj
= x(1

2
, 1
2
)

xRj
= x(1

2
,−1

2
)

x1j = x(1, 0)

x2Rj = x(1,−1)

x2Lj = x(1, 1)

Figure 3.3: Part of the control volume that surrounds edge j (dark shading) and the nodes
involved; quadrilateral grid cells; edges used in Equation (3.12) are coloured
blue

3.6 Grid smoothing

Enhancing the smoothness of the grid is performed by means of an elliptic smoother. This
work is based on Huang (2001, 2005). In order to prevent grid folds in non-convex domains,
the smoother is formulated in terms of a so-called inverse map, i.e. ξ(x, y), and leads to

∇ •
(
G−1∇ξi

)
= 0, i ∈ {1, 2}, (3.13)

where G is the monitor function for grid adaptivity which will be explained later (section 3.6.3)
and ξ1 ≡ ξ, ξ2 ≡ η.

Remark 3.6.1. Although the method is based on an inverse mapping ξ(x, y), it is more
convenient to work with the direct mapping x(ξ, η).
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ξ = c1
ξ = c2 ξ = c3

η = d1

η = d2

∇η = a2

∇ξ = a1

xξ = a1

xη = a2

det(J)

Figure 3.4: Curvilinear coordinate mapping on a planar domain. The tangent and normal
vectors are not necessarily up to scale (Van Dam, 2009).

By interchanging the role of dependent and independent variables, Equation (3.13) can be
transformed into an expression for the direct grid mapping x(ξ, η):

∂x

∂ξ

〈
a1,

∂ (G−1)

∂ξ
a1

〉
+

∂x

∂η

〈
a1,

∂ (G−1)

∂ξ
a2

〉
+

∂x

∂ξ

〈
a2,

∂ (G−1)

∂η
a1

〉
+

∂x

∂η

〈
a2,

∂ (G−1)

∂η
a2

〉
−
(〈

a1, G−1a1
〉 ∂2x

∂ξ2
+
〈
a1, G−1a2

〉 ∂2x

∂ξ∂η
+

〈
a2, G−1a1

〉 ∂2x

∂η∂ξ
+
〈
a2, G−1a2

〉 ∂2x

∂η2

)
= 0, (3.14)

where by ⟨•, •⟩ an inner product is meant and a1 = ∇ξ and a2 = ∇η are the contravariant
base vectors (Figure 3.4), by definition:

aα • aβ = δβα, α, β ∈ {1, 2} (3.15)

and thus

∥aγ∥ =
1

∥aγ∥
, γ ∈ {1, 2} (3.16)

Obviously we need to start by defining the node coordinates in (ξ, η)-space based on their
connectivity with neighboring grid nodes.

3.6.1 Assigning the node coordinates in computational space

By assigning the node coordinates in computational (ξ, η)-space, we postulate the optimal
smooth grid. Compare with a curvi-linear grid in this respect. To see how we have to choose
the (ξ, η) coordinates, first consider a linearization of the grid mapping around a node:

x = x0 + J(ξ − ξ0) +O
(
∥ξ∥2

)
, (3.17)

where x0 and ξ0 are the node coordinates in physical and computational space respectively
and J is the Jacobian matrix of the transformation. Following Huang (2005), the Jacobian
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matrix J can be decomposed into (singular value decomposition):

J = UΣV T, (3.18)

where V T is a rotation in (ξ, η)-space, Σ a compression/expansion and U a rotation in
(x, y)-space, see Figure 3.5.

ξ-space ξ-space

x-space x-space

V T

U

ΣJ = UΣV T

Figure 3.5: Geometric meaning of the singular value decomposition of Jacobian matrix J
(Huang, 2005, fig. 2.2)

Since Equation (3.14) is invariant to rotation of the (ξ, η)-axis, rotation V is irrelevant and we
may start by assigning ξ = (0, 0)T to the center node i and ξ = (1, 0)T to an arbitrary
neighboring node.

We now proceed by considering a cell attached to a node i in coordinate frame (ξ′, η′),
see Figure 3.6, and define an optimal angle Φopt between two subsequent edges that are
connected to node i.

η
′

ξ

η

Φ

Φ0
Φopt

ξ
′

Figure 3.6: non-rectangular triangular cell; the dashed cell is an optimal equiangular poly-
gon, while the shaded cell is the resulting cell after scaling in η′ direction; Φ0

is the angle of the ξ′-axis in the (ξ, η)-frame

Definition 3.6.2. The optimal angle Φopt is the angle between two subsequent edges of a
cell, both connected to node i, that would lead to the desired optimal smooth grid cell.
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Remark 3.6.3. In general, the optimal smooth cell is an equiangular polygon, with the excep-
tion for rectangular triangles. The optimal angle at a node of a rectangular triangle is either
1
4
π or 1

2
π, depending on the grid connectivity.

For a non-rectangular triangle this optimal angle would be 1
3
π. However, by considering a

node with five non-rectangular triangles attached, one can easily understand that this angle
is unsuitable in general, as five of such angles do not sum up to 2π. Therefore, we define a
true angle as follows:

Definition 3.6.4. The true angle Φ is the angle between two subsequent edges of a cell, both
connected to node i, such that sum of all cell true-angles equals its prescribed value of either
2π (internal nodes), π (boundary nodes) or 1

2
π (corner nodes).

The true cell is obtained from the optimal cell by scaling the cell, as will be explained later
(section 3.6.1.2).

Returning to the optimal angle, we first discriminate between rectangular cells and non-
rectangular cells to account for (partly) quadrilateral grids.

i A

B

C

D

EF

G

H

I

J
K

Figure 3.7: The stencil for node i formed by the nodes A, . . . , K. Node D and H are
rectangular nodes. The node angle is between two subsequent blue edges.

Definition 3.6.5. The stencil is the set of cells that are connected to node i. A node angle
is the angle between two subsequent stencil-boundary edges connected to node i. A rect-
angular node, not being node i itself, is a node that is connected to three or less non-stencil
quadrilateral cells and no other non-stencil nodes. A rectangular cell is a quadrilateral cell or
a triangular cell which contains at least one right angle.

Note: Each node of a rectangular cell will be called a rectangular node. So one of the optimal
angles Φopt of such a cell is rectangular. Rectangular nodes have optimal node angles as
indicated in Figure 3.8, which can be 1

4
π, 1

2
π, π or 3

2
π. It will be indicated with the sub-script

rect.
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θrect1

Φopt

j12

θrect2

Figure 3.8: Rectangular triangle cell; additional node angles θrect1 and θrect2 and edge
j12 are used to determine optimal angle Φopt

The rectangular node angles are computed by

θrecti =


(2− 1

2
Nnsq) π, node i is a rectangular internal node,

(1− 1
2
Nnsq) π, node i is a rectangular boundary node,

1
2
π, node i is a rectangular corner node,

(3.19)

where Nnsq is the number of non-stencil quadrilaterals connected to node i. The optimal
angle Φopt for rectangular nodes is finally determined by (see Figure 3.8)

Φopt =


(1− 2

N
) π, N ≥ 4 ∨ non-rectangular cell,

1
2
π, N = 3 ∧ rectangular cell with two rectangular nodes ’1’ and ’2’

∧ θrect1 + θrect2 = π

∧ j12 is not a boundary edge,
1
4
π, other,

(3.20)

where N is the number of nodes that comprise the cell. In the example of Figure 3.8, nodes
1 and 2 are rectangular nodes with angles of π and 1

2
π respectively and the shaded cell is a

rectangular triangle with optimal angle 1
4
π.

3.6.1.1 Determining the true cell angles

Having defined the optimal angles for all cells, we can derive the true angles by demanding
that the cells fit in the stencil. To this end, we consider the number and type of cells connected
to node i.

Definition 3.6.6. The sum of all cell-optimal and true angles are called ΣΦopt and ΣΦ re-
spectively. Furthermore, the sum of all optimal and true angles of quadrilateral cells are called
ΣΦopt

quad and ΣΦquad respectively. The number of quadrilateral cells is Nquad. The same def-

initions hold for the rectangular triangular cells: ΣΦopt
trirect

, ΣΦtrirect and Ntrirect respectively
and for the remaining cells: ΣΦopt

rem, ΣΦrem and Nrem respectively.

Remark 3.6.7. The remaining cells are not necessarily non-rectangular triangles only, but can
also be pentagons and/or hexagons, et cetera.

12 of 207 Deltares



DRAF
T

Unstructured grid generation

Of course holds

ΣΦopt = ΣΦopt
quad + ΣΦopt

trirect
+ ΣΦopt

rem, (3.21)

N = Nquad +Ntrirect +Nrem. (3.22)

In a similar fashion, the sum of all true angles should sum up to 2πf , where

f =


1, internal node,
1
2
, boundary node,

1
4
, corner node.

(3.23)

In other words, we seek true angles ΣΦquad , ΣΦtrirect and ΣΦrem such that:

ΣΦquad + ΣΦtrirect + ΣΦrem = 2πf. (3.24)

This is achieved by setting

ΣΦquad = µ ΣΦopt
quad, (3.25)

ΣΦtrirect = µ µtrirectΣΦ
opt
trirect

, (3.26)

ΣΦrem = µ µremΣΦ
opt
rem. (3.27)

We give highest precedence to the optimal angles of quadrilateral cells, followed by rectan-
gular triangular cells and lowest precedence to the remaining cells. From the angle left for
the remaining cells (non-rectangular triangles, pentagons and hexagons) the coefficient µrem

can be determined (with a lower band):

µrem = max

(
2π f −

(
ΣΦopt

quad + ΣΦopt
trirect

)
ΣΦopt

rem

,
NtriΦmin

ΣΦopt
rem

)
, (3.28)

If there are remaining cells (Nrem > 0) then µtrirect = 1 and if there are no remaining
cells µrem = 1 and ΣΦopt

rem = 0 and does not influence the angles available for quads and
rectangular triangles. So:

µtrirect =


1 Nrem > 0

max

(
2π f − ΣΦopt

quad

ΣΦopt
trirect

,
NtrirectΦmin

ΣΦopt
trirect

)
, Nrem = 0,

(3.29)

At last µ is determined by taken all cells into account

µ =
2π f

ΣΦopt
quad + µtrirectΣΦ

opt
trirect

+ µremΣΦ
opt
rem

. (3.30)

Φmin = 1
12
π is the minimum cell angle, determining a lower band for the factors µtrirect and

µrem.

3.6.1.2 Assigning the node coordinates

With the the optimal angles of the cell defined, the (ξ′, η′) coordinates can be assigned to the
cell nodes. We require that all edges connected to node i have unit length in computational
(ξ, η)-space, which has its consequences for rectangular triangles.
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η′

ξ′

η

ξγ

α
β

γ

γ
γ

Figure 3.9: Computational coordinates for one quadrilateral and five triangular cells, one
of which is a rectangular (shaded) before transformation to (ξ, η)-coordinates.
α = 1

2π, β = 1
4π and γ = 5

4π/4.

Remark 3.6.8. Since all edges connected to node i are required to have unit length, rectan-
gular triangles may be transformed into non-rectangular triangles, but maintain their cell angle
Φopt, see Figure 3.9 for an example.

0

1

2

3

4

R0

Xπ − θ

θ

M

(a) Nodes on circle.

0

1

2

3

4

R0

X MΦ

(b) Nodes on ellipse.

Figure 3.10: The circle in Figure 3.10a is squeezed in vertical direction (i.e. ⊥ OM ) to
obtain the ellipse in Figure 3.10b. Blue: d(M, 0) = d(M, 1) = d(M, 4) =
R0; Green: d(0, 1) = d(0, 4) = 1.

Since the cell in (ξ′, η′) coordinates is an equiangular polygon in (ξ′, η′)-space (Figure 3.10a),
the coordinates of the ith node is

ξ′ = R0 (1− cos(i θ)), (3.31)

η′ = −R0 sin(i θ), (3.32)

θ =
2π

N
(3.33)
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where i = 0 corresponds to the center node i and counting counterclockwise, N is the
number of nodes that comprise the cell and R0 the radius of the circumcircle, see Fig-
ure 3.10a (node ξi−1 = i − 1 and i = 1, . . . , N ). The circle in Figure 3.10a is squeezed
in such a way that the edge from node 0 to node 1 and node 0 to node 4 has length 1 (dis-
tance: d(0, 1) = d(0, 4) = 1) and Φ is the true angle, also d(0, X) remains the same(
R0(1− cos θ) = cos(1

2
Φ)
)

because the squeezing is perpendicular to the OM -axis (i.e.
the ξ′-axis). The other edges of the polygon does not have, in general, a length of 1 after
squeezing. The radius of the circumcircle read:

R0 =
cos(1

2
Φ)

(1− cos θ)
(3.34)

The cell aspect ratio A is defined as the ratio between the distance d(1, N) in Figure 3.10b
and the distance d(1, N) in Figure 3.10a, yielding:

A =
(1− cos θ) tan(1

2
Φ)

sin θ
, (3.35)

where θ = 2π
N

, with N being the number of nodes that comprise the cell.

The coordinates (ξ, η) of the cell nodes are obtained by scaling and rotating the cell in such
a way that it fits in the stencil, see Figure 3.6. The transformation from (ξ′, η′) to (ξ, η)
coordinates read:

ξ = cos (Φ0) ξ
′ − A sin (Φ0) η

′, (3.36)

η = sin (Φ0) ξ
′ + A cos (Φ0) η

′, (3.37)

3.6.2 Computing the operators

For the solution of Equation (3.14), we approximate
∂2x

∂ξ∂η
at node ξ0

∂2x

∂ξ∂η

∣∣∣∣
ξ0

≈
∑
j∈J

Dξ

(∑
i∈N

Gηxi

)
j

, (3.38)

and similar for the other derivatives
∂2x

∂ξ2
,
∂2x

∂η2
and

∂2x

∂η∂ξ
, where:

Definition 3.6.9. J is the set of edges attached to node ξ0 and N is the set of nodes in the
stencil of node ξ0. Furthermore, Gξ and Gη are the node-to-edge approximations and Dξ

and Dη the edge-to-node approximations of the ξ and η derivatives respectively.

The discretization is as follows. For some quantity Φ, its gradient can be approximated in the
usual finite-volume way

∇ξΦ ≈ 1

vol(Ωξ)

∮
∂Ωξ

Φnξ dSξ. (3.39)
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3.6.2.1 Node-to-edge operator

ξ1j

ξ0

j

ξRj

ξ1j+1

ξLj

Figure 3.11: Control volume for computing the node-to-edge gradient at edge j discrete
for the discrete operators Gξ, Gξ

For the node-to-edge gradient (Gξ, Gη)
T we take the control volume as indicated in Fig-

ure 3.11 and obtain for some node-based quantity Φ

(Gξ, Gη)
TΦ
∣∣∣
j
=


(ξRj

− ξLj
)⊥(Φ1j − Φ0) − (ξ1j − ξ0)

⊥(ΦRj
− ΦLj

)

∥(ξ1j − ξ0)× (ξRj
− ξLj

)∥
, j ∈ Jint,

(ξR∗
j
− ξLj

)⊥(Φ1j − Φ0) − (ξ1j − ξ0)
⊥(ΦR∗

j
− ΦLj

)

∥(ξ1j − ξ0)× (ξRj
− ξLj

)∥
, j ∈ Jbnd,

(3.40)

where we use similar definitions as Definitions 3.5.2 and 3.5.3, and Remark 3.5.4 also holds.
Furthermore, ξ • ξ⊥ = 0 ⇒ ξ⊥ = (−η, ξ)T, so ξ⊥ is parallel to the contravariant vector a2

(ξ = a1 and a1 •a2 = 0) and ξ0 = 0 by construction. Because the values ξLj
and ξRj

are
not node based, the value at the circumcentres need to be determined from the node values
of that cell.

Determine the value at circumcenters

The cell circumcenters ξLj
and ξRj

can be expressed in general form as

ξLj
=
∑
i∈N

Ai
Lj

ξi, (3.41)

ξRj
= ξLj−1

, (3.42)

Definition 3.6.10. ALj
is the left node-to-cell mapping for the cell left from edge j.

The above summation is over all nodes, the coefficient Ai
Lj

= 0 if the node i does not belong
to the left cell of edge j.
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Circumcenter of non triangle

For a non-triangle cell k the centroid is taken as an approximation of the circumcenter. So:

ALj
=

1

N
, L(j) = k (3.43)

where N is the number of vertices of the cell k.

Circumcenter of a triangle

For triangular cells on the other hand, the circumcenter is used and computed as follows:

ξLj
= ξ0 + α(ξ1j − ξ0) + β(ξ1j+1

− ξ0), (3.44)

ξRj
= ξLj−1

, (3.45)

ξLj

ξ0 ξ1j

ξ1j+1

θ

Figure 3.12: Sketch for the computation of the cirumcentre of a triangle

where

α =
1− 1

γ
c

2(1− c2)
, (3.46)

β =
1− γc

2(1− c2)
, (3.47)

and

γ =
∥ξ1j − ξ0∥
∥ξ1j+1

− ξ0∥
, (3.48)

c =
(ξ1j − ξ0) • (ξ1j+1

− ξ0)

∥ξ1j − ξ0∥ ∥ξ1j+1
− ξ0∥

(= cos θ). (3.49)

Remark 3.6.11. The edges j around node i are arranged in counterclockwise order.

The circumcenter of a triangle expressed in the vertex coordinates (Equation (3.41)) read:

ξLj
= (1− α− β)ξ0 + αξ1j + βξ1j+1

, (3.50)

ξRj
= ξLj−1

, (3.51)

The cell center values Φ in Equation (3.40) are computed in the same manner, i.e.:

ΦLj
=
∑
i∈N

Ai
Lj
Φi, (3.52)

ΦRj
= ΦLj−1

. (3.53)
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Operator Gξ and Gη

Combining Equation (3.40), Equation (3.52) and Equation (3.53) yields for each internal edges
j

GξΦ|j =
−(ηRj − ηLj)(Φ1j − Φ0) + (η1j − η0)

∑
i∈N

(Ai
Lj−1

Φi − Ai
Lj
Φi)

∥(ξ1j − ξ0)× (ξRj
− ξLj

)∥
, j ∈ Jint,

(3.54)

and

GηΦ|j =
(ξRj − ξLj)(Φ1j − Φ0)− (ξ1j − ξ0)

∑
i∈N

(Ai
Lj−1

Φi − Ai
Lj
Φi)

∥(ξ1j − ξ0)× (ξRj
− ξLj

)∥
, j ∈ Jint,

(3.55)

Boundary edges are treated in a similar fashion as before, see Equation (3.9), by creating a
virtual node:

ξR∗
j
= 2ξbcj − ξLj

, (3.56)

ΦR∗
j
= 2Φbcj − ΦLj

, (3.57)

and

ξbcj = ξ0 + αξ(ξ1j − ξ0), (3.58)

Φbcj = Φ0 + αx(Φ1j − Φ0), (3.59)

with

αξ = (ξLj
− ξ0) •

ξ1j − ξ0

∥ξ1j − ξ0∥
, (3.60)

αx = αξ. (3.61)

Remark 3.6.12. Note that αξ =
1
2

for triangular and quadrilateral cells. The boundary condi-
tions are non-orthogonal, in contrast to Equation (3.8). This maintains the linearity of opera-
tors Gξ and Gη.

Substitution in Equation (3.40) yields for each boundary edge j

GξΦ|j =
−(ηR∗

j
− ξLj

)(Φ1j − Φ0) + (η1j − η0)(ΦR∗
j
−
∑
i∈N

Ai
Lj
Φi)

∥(ξ1j − ξ0)× (ξR∗
j
− ξLj

)∥
, j ∈ Jbnd,

(3.62)

and

GηΦ|j =
(ξR∗

j
− ξLj

)(Φ1j − Φ0)− (ξ1j − ξ0)(ΦR∗
j
−
∑
i∈N

Ai
Lj
Φi)

∥(ξ1j − ξ0)× (ξR∗
j
− ξLj

)∥
, j ∈ Jbnd, (3.63)
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3.6.2.2 Edge-to-node operator

For the edge-to-node gradient we take the control volume as indicated in Figure 3.13

j

ξ0

ξ1j

ξ1j+1

ξRj

ξLj

Figure 3.13: Control volume for computing the edge-to-node gradient at the central node
for the discrete operators Dξ and Dη, where ξ = ξ0 = 0

and obtain

(Dξ, Dη)
T =

1

V
dj, (3.64)

where

dj =

{
(ξRj

− ξLj
)⊥, j ∈ Jint,

(ξbcj − ξLj
)⊥ − (ξbcj − ξ0)

⊥, j ∈ Jbnd,
(3.65)

and with ξ ∈ IR2

V =

∫
Ω

dΩ =
1

2

∫
Ω

∇ • ξ dΩ =
1

2

∮
∂Ω

ξ • n dΓ ⇒ (3.66)

V =
1

2

∑
j∈Jint

ξLj
+ ξRj

2
• dj +

1

2

∑
j∈Jbnd

ξLj
+ ξR∗

j

2
• dj. (3.67)

3.6.2.3 Node-to-node operator

The computation of the Jacobian requires the node-to-node gradient.

Definition 3.6.13. Jξ and Jη are the node-to-node approximations of the ξ and η derivatives
respectively.

They can be constructed as

Jξ|i =
∑

j∈Jint

Dξ

(
1

2

∑
i∈Iint

(Ai
Lj
Ji + Ai

Lj−1
Ji)

)
j

+
∑

j∈Jbnd

Dξ

(
1

2
(J0j + J1j)

)
j

,

(3.68)
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and

Jη|i =
∑

j∈Jint

Dη

(
1

2

∑
i∈Iint

(Ai
Lj
Ji + Ai

Lj−1
Ji)

)
j

+
∑

j∈Jbnd

Dη

(
1

2
(J0j + J1j)

)
j

.

(3.69)

3.6.3 Computing the mesh monitor matrix

In the discretization of Equation (3.14), we approximate the contravariant base vectors by
firstly computing the Jacobian by applying Equation (3.68) and Equation (3.69), and using
a1 = ∇ξ and a2 = ∇η:

a1 = ( J22,−J12)
T/ det J, (3.70)

a2 = (−J21, J11)
T/ det J. (3.71)

The mesh monitor matrix G is computed as explained in Huang (2001). It is based on a
solution value at grid nodes, that determines the mesh refinement direction v:

v = ∇u, (3.72)

which is approximated by firstly smoothing u, and computing

v =
∑
i∈N

a1Jξui + a2Jηui. (3.73)

This direction vector is directly inserted in the mesh monitor matrix, see Huang (2001) for
details. The obtained mesh monitor matrix is smoothed, after which the inverse G−1 is calcu-
lated.

3.6.4 Composing the discretization

With the operators Dξ, Dη, Gξ and Gη available, and the contravariant base vectors a1 and
a2 and the inverse mesh monitor matrix G−1 computed, the discretization of Equation (3.14)
is a straightforward task. We obtain∑

i∈N

wixi = 0, (3.74)

where

wi =

〈
a1,

∂ (G−1)

∂ξ
a1

〉
Jξ +

〈
a1,

∂ (G−1)

∂ξ
a2

〉
Jη+〈

a2,
∂ (G−1)

∂η
a1

〉
Jξ +

〈
a2,

∂ (G−1)

∂η
a2

〉
Jη

−

(〈
a1, G−1a1

〉∑
j∈J

Dξ Gξ|j +
〈
a1, G−1a2

〉∑
j∈J

Dξ Gη|j +

〈
a2, G−1a1

〉∑
j∈J

Dη Gξ|j +
〈
a2, G−1a2

〉∑
j∈J

Dη Gη|j

)
= 0, (3.75)
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4 Numerical schemes

4.1 Time integration

. . .

4.2 Matrix solver: Gauss and CG

The implicit part of the discretized PDEs is solved by a combination of Gauss elimination,
based on minimum degree, and CG.1 The procedure solves an equation As1 = b, where A
is a sparse, diagonally dominant and symmetric matrix. The array s1(1:nodtot) contains
the unknown values to be solved. The value of nodtot describes the number of nodal points.
The sample program calls two routines:

1 the routine prepare
2 the routine solve_matrix

4.2.1 Preparation

prepare determines which rows of matrix A, i.e., which nodes, are solved by Gauss elimina-
tion and which by CG, based on the nodes’ degree. It need to be applied just once, thereafter
solve_matrix can be called as many times as needed. The inputs of prepare are the
following arrays and variables:

nodtot the total number of nodes or unknowns
lintot the total number of initial upper-diagonal non-zero entries of the orig-

inal equation not affected by Gaussian elimination, or the total num-
ber of lines between two nodes.

maxdgr the maximum degree of a node that is eliminated by Gaussian elimi-
nation

line(1:lintot,1:2) the adjacency graph of A or the list of the indices of non-zero
entries.

The outputs of prepare are the following arrays and variables:

nogauss the number of nodes that will be eliminated by Gaussian elimination
nocg the number of unknowns of the remaining equation to be solved by

CG.
ijtot the total number of upper-diagonal non-zero entries including the fill-

ins due to Gaussian elimination.
ijl(1:lintot) contains the addresses of aij(1:ijtot) (lintot<=ijtot)

where the non-zero entries of the original equation are to be stored.
noel(1:nogauss) numbers of the nodes that will be eliminated by Gaussian elimi-

nation in the order given by noel(1:nogauss). The remaining
unknowns, given by
noel(nogauss+1:nogauss+nocg), are solved by CG.

row(1:nodtot) sparse matrix administration used by solve_matrix (see pro-
gram listing)

4.2.2 Solving the matrix

The output of prepare is input to solve_matrix. Other input to solve_matrix is
given by:

1The Gauss+CG solver was designed and implemented by Guus Stelling. This section is largely a copy of his
original Word document accompanying a test program.
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aii(1:nodtot) the main diagonal elements of A
aij(ijl(1:lintot)) the non-zero upper-diagonal elements of A
bi(1:nodtot) the components of the right hand side vector b
s0(1:nodtot) initial estimate of the final solution
ipre if ipre=1 then point Jacobi preconditioning is applied otherwise

LUD preconditioning will be applied

The subroutine does the following steps:

1 call gauss_elimination
2 call cg(ipre)
3 call gauss_substitution

After this the unknown vector s1(1:nodtot) has been found.

4.2.3 Example

To illustrate the solve_matrix routine the following example is given:

01 02 03 04 05 06

07 08 09 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

This is the adjacency graph of a 36×36matrixA. For this graph nodtot=36 and lintot=60.
The graph is described by the following set of lines:

(01,02) (07,08) (13,14) (19,20) (25,26) (31,32) (02,03) (08,09) (14,15) (20,21) (26,27) (32,33)
(03,04) (09,10) (15,16) (21,22) (27,28) (33,34) (04,05) (10,11) (16,17) (22,23) (28,29) (34,35)
(05,06) (11,12) (17,18) (23,24) (29,30) (35,36) (01,07) (07,13) (13,19) (19,25) (25,31) (02,08)
(08,14) (14,20) (20,26) (26,32) (03,09) (09,15) (15,21) (21,27) (27,33) (04,10) (10,16) (16,22)
(22,28) (28,34) (05,11) (11,17) (17,23) (23,29) (29,35) (06,12) (12,18) (18,24) (24,30) (30,36),

as can be verified in the picture. The degree of each node and its connecting node numbers
are given by the following table:

node 1 : 2 2 7

node 2 : 3 1 3 8

node 3 : 3 2 4 9

node 4 : 3 3 5 10

node 5 : 3 4 6 11

node 6 : 2 5 12

node 7 : 3 8 1 13

node 8 : 4 7 9 2 14
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node 9 : 4 8 10 3 15

node 10 : 4 9 11 4 16

node 11 : 4 10 12 5 17

node 12 : 3 11 6 18

node 13 : 3 14 7 19

node 14 : 4 13 15 8 20

node 15 : 4 14 16 9 21

node 16 : 4 15 17 10 22

node 17 : 4 16 18 11 23

node 18 : 3 17 12 24

node 19 : 3 20 13 25

node 20 : 4 19 21 14 26

node 21 : 4 20 22 15 27

node 22 : 4 21 23 16 28

node 23 : 4 22 24 17 29

node 24 : 3 23 18 30

node 25 : 3 26 19 31

node 26 : 4 25 27 20 32

node 27 : 4 26 28 21 33

node 28 : 4 27 29 22 34

node 29 : 4 28 30 23 35

node 30 : 3 29 24 36

node 31 : 2 32 25

node 32 : 3 31 33 26

node 33 : 3 32 34 27

node 34 : 3 33 35 28

node 35 : 3 34 36 29

node 36 : 2 35 30

If no Gaussian elimination is is applied, but if the equation is solved entirely by CG then
this administration is used by the cg subroutine. However if every point up to degree 4 (i.e.
maxdgr=5) is eliminated by Gauss then the following table might result:

gauss 1 : 2 2 7

gauss 6 : 2 5 12

gauss 31 : 2 32 25

gauss 36 : 2 35 30

gauss 2 : 3 3 8 7

gauss 4 : 3 3 5 10

gauss 7 : 3 8 13 3

gauss 12 : 3 11 18 5
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gauss 19 : 3 20 13 25

gauss 24 : 3 23 18 30

gauss 32 : 3 33 26 25

gauss 34 : 3 33 35 28

gauss 5 : 4 11 3 10 18

gauss 8 : 4 9 14 3 13

gauss 11 : 4 10 17 18 3

gauss 15 : 4 14 16 9 21

gauss 22 : 4 21 23 16 28

gauss 25 : 4 26 20 13 33

gauss 26 : 4 27 20 33 13

gauss 29 : 4 28 30 23 35

gauss 30 : 4 35 23 18 28

gauss 35 : 4 33 28 23 18

cg 3 : 6 9 10 13 18 14 17

cg 9 : 6 10 3 14 13 16 21

cg 10 : 5 9 16 3 18 17

cg 13 : 6 14 3 20 9 33 27

cg 14 : 6 13 20 9 3 16 21

cg 16 : 7 17 10 14 9 21 23 28

cg 17 : 5 16 18 23 10 3

cg 18 : 6 17 23 3 10 28 33

cg 20 : 5 21 14 13 33 27

cg 21 : 7 20 27 14 16 9 23 28

cg 23 : 6 17 18 21 16 28 33

cg 27 : 5 28 21 33 20 13

cg 28 : 6 27 33 21 23 16 18

cg 33 : 6 27 28 20 13 23 18

The corner nodes have the lowest degree so they are eliminated first as the table shows.
These are followed by other nodes on the boundary before internal nodes are eliminated.
After each elimination step the degree of neighboring points, due to fill-in, might be increased,
so minimum degree automatically imposes some kind of colored ordering of the nodal points.
Elimination of such points is known to improve the convergence properties of CG, see e.g.
Bruaset (1995). The nodes, which are left over for CG, clearly show the increased degree
due to fill in.

In general the fastest convergence, in terms of number of iterations, is obtained by choosing
maxdgr as large as memory allows in combination with LUD pre-conditioning. However in
terms of computational time the fastest convergence is obtained by a moderate choice of
maxdgr, such that approximately 50 % of the total number of grid points is eliminated by
Gauss in combination with point Jacobi preconditioning.
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5 Conceptual description

5.1 Introduction

[yet empty]

5.2 General background

[yet empty]

5.3 Governing equations

[yet empty]

5.4 Boundary conditions

[yet empty]

5.5 Turbulence

Reynold’s stresses

The Reynolds stresses in the horizontal momentum equation are modelled using the eddy
viscosity concept, (for details e.g. Rodi (1984)). This concept expresses the Reynolds stress
component as the product between a flow as well as grid-dependent eddy viscosity coefficient
and the corresponding components of the mean rate-of-deformation tensor. The meaning and
the order of the eddy viscosity coefficients differ for 2D and 3D, for different horizontal and
vertical turbulence length scales and fine or coarse grids. In general the eddy viscosity is a
function of space and time.

For 3D shallow water flow the stress tensor is an-isotropic. The horizontal eddy viscosity
coefficient, νH , is much larger than the vertical eddy viscosity νV (νH ≫ νV ). The horizontal
viscosity coefficient may be a superposition of three parts:

1 a part due to “sub-grid scale turbulence”,
2 a part due to “3D-turbulence” see Uittenbogaard et al. (1992) and
3 a part due to dispersion for depth-averaged simulations.

In simulations with the depth-averaged momentum and transport equations, the redistribution
of momentum and matter due to the vertical variation of the horizontal velocity is denoted as
dispersion. In 2D simulations this effect is not simulated as the vertical profile of the horizontal
velocity is not resolved. This dispersive effect may be modelled as the product of a viscosity
coefficient and a velocity gradient. The dispersive viscosity coefficient may be estimated by
the Elder formulation.

If the vertical profile of the horizontal velocity is not close to a logarithmic profile (e.g. due to
stratification or due to forcing by wind) then a 3D-model for the transport of matter is recom-
mended instead of 2D modelling with Elder approximation.

The horizontal eddy viscosity is mostly associated with the contribution of horizontal turbulent
motions and forcing that are not resolved by the horizontal grid (“sub-grid scale turbulence”)
or by (a priori) the Reynolds-averaged shallow-water equations. For the former we introduce
the sub-grid scale (SGS) horizontal eddy viscosity νSGS and for the latter the horizontal eddy
viscosity νV . D-Flow FM simulates the larger scale horizontal turbulent motions through a
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sub-grid scale method (SGS), eg. Elder. The user may add a background horizontal viscosity,
νback
H , as a constant or spatially dependent. Consequently, in D-Flow FM the horizontal eddy

viscosity coefficient is defined by

νH = νSGS + νV + νback
H . (5.1)

The 3D part νV is referred to as the three-dimensional turbulence and in 3D simulations it is
computed following a 3D-turbulence closure model.

For turbulence closure models responding to shear production only, it may be convenient to
specify a background or “ambient” vertical mixing coefficient in order to account for all other
forms of unresolved mixing, νback

V . Therefore, in addition to all turbulence closure models in
D-Flow FM a constant (space and time) background mixing coefficient may be specified by the
user, which is a background value for the vertical eddy viscosity in the momentum equations.
Consequently, the vertical eddy viscosity coefficient is defined by:

νV = νmol +max(νV , ν
back
V ), (5.2)

with νmol the kinematic viscosity of water. The 3D part ν3D is computed by a 3D-turbulence
closure model, see section 7.8.

5.6 Secondary flow

This section presents developments regarding to the secondary flow by means of radius of
flow curvature and the spiral intensity equation. Then the spiral flow intensity is used to calcu-
late the deviation angle of shear stress, and the effect of secondary flow on depth averaged
equations. The governing equations are first explained, then, the numerical techniques for
reconstruction of velocity gradients are described.

5.6.1 Governing equations

5.6.1.1 Streamline curvature

The curvature of flow streamlines, 1/Rs, can be defined by

1

Rs

=
dx
dt

d2y
dt2

− dy
dt

d2x
dt2[(

dx
dt

)2
+
(
dy
dt

)2]3/2 (5.3)

where x and y are the coordinate components of flow element and t is time. Substituting
u = dx/dt and v = dy/dt gives

1

Rs

=
udv

dt
− v du

dt

(u2 + v2)3/2
(5.4)

Expanding the material derivatives du/dt and dv/dt gives,

1

Rs

=
u
(

∂v
∂t

+ u ∂v
∂x

+ v ∂v
∂y

)
− v

(
du
dt

+ u∂u
∂x

+ v ∂u
∂y

)
(u2 + v2)3/2

(5.5)

Under the assumption of a steady flow, Equation 5.5 changes to,

1

Rs

=
u2 ∂v

∂x
+ uv ∂v

∂y
− uv ∂u

∂x
− v2 ∂u

∂y

(u2 + v2)3/2
(5.6)
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Equation (5.6) describes the curvature of flow streamlines by means of the velocity field. The
sign of the streamline curvature indicates the direction in which the velocity vector rotates
along the curve. If the velocity vector rotates clockwise, then 1/R > 0 and if it rotates
counterclockwise, then 1/R < 0. Following this convention, the spiral flow intensity will be
negative for bends with flows from left to right, and positive for bends with flows from right to
the left.

5.6.1.2 Spiral flow intensity

As the curvature is calculated, it can be contributed in the solution of spiral flow intensity. The
spiral flow intensity, I , is calculated by

∂hI

∂t
+

∂uhI

∂x
+

∂vhI

∂y
= h

∂

∂x

(
DH

∂I

∂x

)
+ h

∂

∂y

(
DH

∂I

∂y

)
+ hS (5.7)

where h is the water depth and

S = −I − Ie
Ta

(5.8)

Ie = Ibe − Ice (5.9)

Ibe =
h

Rs

|u| (5.10)

Ice = f
h

2
(5.11)

|u| =
√
u2 + v2 (5.12)

Ta =
La

|u|
(5.13)

La =
(1− 2α)h

2κ2α
(5.14)

As the spiral motion intensity is found, it can be used in calculating the bedload transport
direction and the dispersion stresses (and the effect on the momentum equations).

5.6.1.3 Bedload transport direction

In the case of depth-averaged simulation (two-dimension shallow water), the spiral motion
intensity is used to calculate the bedload transport direction ϕτ , which is given by

tanϕτ =
v − αI

u
|u|I

u+ αI
v

|u|I
(5.15)

in which

αI =
2

κ2
Es

(
1−

√
g

κC

)
(5.16)

Here g is the gravity, κ is the von Kármán constant and C is the Chézy coefficient. Es is a
coefficient specified by the user to control the effect of the spiral motion on bedlead transport.
Value 0 implies that the effect of the spiral motion is not included in the bedload transport
direction.
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5.6.1.4 Dispersion stresses

The momentum equations for shallow water are given as (without the Coriolis force)

∂uh

∂t
+

∂uuh

∂x
+

∂vuh

∂y
= −gh

∂zs
∂x

− Cfu |u| −
∂hTxx

∂x
− ∂hTyx

∂y
− ∂hSxx

∂x
− ∂hSyx

∂y
(5.17)

∂vh

∂t
+

∂vuh

∂x
+

∂vvh

∂y
= gh

∂zs
∂y

− Cfv |u| −
∂hTyx

∂x
− ∂hTyy

∂y
− ∂hSyx

∂x
− ∂hSyy

∂y
(5.18)

The 3D velocity, can be decomposed into three components

U = u+ u∗ + u′ (5.19)

where u is the depth-averaged velocity component, u∗ is the depth-varying and u′ is the
time varying component. The depth-averaged Reynolds stresses are represented as Sxx,
Sxy, Syx and Syy following from an averaging operations in time and depth. The so-called
dispersion terms are found on the right hand side

Txx = ⟨u∗u∗⟩ , Txy = ⟨u∗v∗⟩
Tyx = ⟨v∗u∗⟩ , Tyy = ⟨v∗v∗⟩ (5.20)

The dispersion stresses need closure, similar to the Reynolds stresses. The used approach
is to consider a fully developed flow in the streamwise direction (i.e. primary flow = logarith-
mic), and from a 1DV model it is possible to reconstruct the secondary flow profile. The time

Figure 5.1: The flow streamline path and the direction of dispersion stresses.

averaged velocity can be written as:

u = u+ u∗ = us (1 + fs) cos θ − us
H

Rs

fn sin θ (5.21)

v = v + v∗ = us
H

Rs

fn cos θ + us (1 + fs) sin θ (5.22)

The depth varying component can subsequently be written as:

u∗ = ufs − v
H

Rs

fn (5.23)

v∗ = u
H

Rs

fn + vfs (5.24)
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Which can subsequently be rewritten as:

u∗ = ufs −
v

|u|
Ifn (5.25)

v∗ =
u

|u|
Ifn + vfs (5.26)

The dispersion terms can be evaluated as:

⟨u∗u∗⟩ = u2
〈
f 2
s

〉
− 2

uv

|u|
I ⟨fsfn⟩+

v2

|u|2
I2
〈
f 2
n

〉
(5.27)

⟨u∗v∗⟩ = uv
〈
f 2
s

〉
+ 2

u2 − v2

|u|
I ⟨fsfn⟩ −

uv

|u|2
I2
〈
f 2
n

〉
(5.28)

⟨v∗v∗⟩ = v2
〈
f 2
s

〉
+ 2

uv

|u|
I ⟨fsfn⟩+

u2

|u|2
I2
〈
f 2
n

〉
(5.29)

Here, we applied Delft3D approach. In Delft3D approach, the following propositions are ap-
plied:

⋄ ⟨f 2
s ⟩ is O (1) but hardly varies (Olesen, 1987, p. 9)

⋄ I2 ⟨f 2
n⟩ is small for mildly curving, shallow water flow

⋄ ⟨fsfn⟩ = 5α− 15.6α2 + 37.5α3 (cf. Deltares (2024b, eq. 9.155))

Under these assumptions the dispersion stresses can be simplified to:

Txx = ⟨u∗u∗⟩ = −2
uv

|u|
I ⟨fsfn⟩ (5.30)

Txy = Tyx = ⟨u∗v∗⟩ = u2 − v2

|u|
I ⟨fsfn⟩ (5.31)

Tyy = ⟨v∗v∗⟩ = 2
uv

|u|
I ⟨fsfn⟩ (5.32)

5.6.2 Numerical schemes

In this section, the numerical techniques, implemented for calculation of secondary flow, are
described. It contains the calculation of the streamline curvature, spiral motion intensity, di-
rection of bedload transport and the effect on the momentum equations.

5.6.2.1 Calculation of streamline curvature

It is known that Perot reconstruction leads to inaccuracies in calculation of the streamlines
curvature for the case with unstructured non-uniform grids. In general it is only first order
accurate on unstructured meshes (Perot, 2000) and the velocity gradients derived from these
reconstructed fields are inconsistent (Shashkov et al., 1998) and can result in erroneous es-
timates of the streamline curvature, leading to non-physical solutions. However, on uniform
meshes, owing to fortunate cancellations on account of grid uniformity, this methodology leads
to second order accurate velocities and consistent gradients (Shashkov et al., 1998; Natarajan
and Sotiropoulos, 2011).

In order to avoid the inaccuracy leading from Perot reconstruction on non-uniform grids, we
reconstructed the velocity gradients by a higher order reconstruction method. There are two
popular methods, namely Green-Gauss and least square reconstructions, which are widely
used in the previous studies (Mavriplis, 2003) and they are also widely implemented in the
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existing commercial software (i.e. ANSYS Fluent). The least-squares constructions represent
a linear function exactly for vertex and cell-centered discretizations on arbitrary mesh types,
unrelated to mesh topology, while the Green-Gauss construction represents a linear function
exactly only for a vertex-based discretization on simple elements, such as triangles or tetra-
hedra (Mavriplis, 2003). Hence, we used least square reconstruction for its ability in handling
with all type of grid structures.

The least-squares gradient construction is obtained by solving for the values of the gradients
which minimize the sum of the squares of the differences between neighboring values and
values extrapolated from the point i under consideration to the neighboring locations. The
objective to be minimized is given as

N∑
k=1

w2
ikE

2
ik (5.33)

where w is a weighting function and E represents the error. Considering a linear reconstruc-
tion, and using Taylor series, we have

uk = ui +
∂u

∂x

∣∣∣∣
i

(xk − xi) +
∂u

∂y

∣∣∣∣
i

(yk − yi) + E
(
∆x2,∆y2

)
(5.34)

Considering ∆xik = xk − xi, ∆yik = yk − yi and ∆uik = uk − ui, it yields

E2
ik =

(
−∆uik +

∂u

∂x

∣∣∣∣
i

∆xik +
∂u

∂y

∣∣∣∣
i

∆yik

)2

(5.35)

A system of two equations for the two gradients ∂u/∂x and ∂u/∂y is obtained by solving the
minimization problem

∂
∑N

k=1w
2
ikE

2
ik

∂ux

= 0 (5.36)

∂
∑N

k=1w
2
ikE

2
ik

∂uy

= 0 (5.37)

Equations (5.36) and (5.37) lead to the following set of equations

ai
∂u

∂x
+ bi

∂u

∂y
= di (5.38)

bi
∂u

∂x
+ ci

∂u

∂y
= ei (5.39)
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where

ai =
N∑
k=1

w2
ik∆x2

ik (5.40)

bi =
N∑
k=1

w2
ik∆xik∆yik (5.41)

ci =
N∑
k=1

w2
ik∆y2ik (5.42)

di =
N∑
k=1

w2
ik∆uik∆xik (5.43)

ei =
N∑
k=1

w2
ik∆uik∆yik (5.44)

The above system of equations for the gradients is then easily solved using Cramer’s rule.
This method is shown to have a second order accuracy (Mavriplis, 2003).

For the unweighted case (wik = 1), the determinant corresponds to a difference in quantities
of the order O (∆x4), which may lead to ill-conditioned systems. This may be the motivation
for investigations into alternate solution techniques for the least-squares construction, such
as the QR factorization method advocated in Haselbacher and Blazek (1999) and Anderson
and Bonhaus (1994). Note that when inverse distance weighting is used (wik =

1√
dx2

ik+dy2ik
),

the determinant scales as O (1), and the system is much better conditioned.

5.6.2.2 Calculation of spiral flow intensity

As the spiral flow intensity is in the form of transport equation, it is calculated using the ex-
isting transport function in D-Flow FM. This is achieved by calculating the source term of
Equation (5.7) and linking it to the existing code.

5.6.2.3 Calculation of bedload sediment direction

The direction of bedload sediment is calculated by implementing Equation (5.15) in D-Flow FM.
The calculated spiral intensity and velocity field is used to find the final angle of the acting
shear stress.

5.6.2.4 Calculation of dispersion stresses

The dispersion stresses Txx, Txy(= Tyx) and Tyy are calculated parametrically by Equa-
tion (5.27) to Equation (5.29). In order to calculate the effect of these stresses on the momen-
tum equations, calculation of derivatives, and hence a reconstruction technique, is necessary.
This is achieved by implementing the same reconstruction technique used in section 5.6.2.

5.7 Wave-current interaction

[yet empty]
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5.8 Heat flux models

[yet empty]

5.9 Tide generating forces

[yet empty]

5.10 Hydraulic structures

5.10.1 Introduction

Hydraulic structures are used to control the flow. The cross-sectional flow area is regulated
with a sill, a movable gate or doors. In the contracting part upstream of the structure, the
flow accelerates due to the local reduction of the wet cross section and in the diverging part
downstream of the structure the outgoing flow decelerates, often with energy losses due to
turbulence. The energy levels upstream and downstream of the hydraulic structure, in combi-
nation with the wet cross section, determine the flow condition at the hydraulic structure. The
flow condition across the hydraulic structure can be one of the following types:

⋄ Free gate flow (the flow is supercritical and restricted by the gate)
⋄ Submerged gate flow (the flow is subcritical and restricted by the gate)
⋄ Free weir flow (the flow over the sill is supercritical and not blocked by the gate)
⋄ Submerged weir flow (the flow over the sill is subcritical and not blocked by the gate).

There are two ways to represent a hydraulic structure in a numerical flow model:

⋄ Overview modelling
⋄ Detail modelling.

The approach depends on the grid size. Let Wstructure be the width of the hydraulic structure
and ∆x be the (local) horizontal grid size. If the horizontal grid is coarse (∆x > Wstructure)
it is not possible to represent the wet cross section at the structure point accurately, so the
velocity at the structure will also be incorrect. The energy losses can not be computed using
the discretized momentum equation and should be parameterized.

For the four flow conditions, one-dimensional discharge relations can be derived, where the
local geometry of the structure is taken into account by empirical structure-dependent con-
traction and resistance coefficients, see section 6.8.3 and section 6.8.4.

The aim of so-called overview modelling is that the approach will lead to a correct discharge
through the structure given the energy level upstream and the water level downstream. The
velocity is not resolved on the grid. On a fine computational grid it is possible to represent
the wet cross section at the structure point more accurately, so the locally increased flow
velocity can be determined on the computational grid. One should realize that the grid is still
too coarse to compute the energy losses accurately and not all the 3D physical processes
(non-hydrostatic pressure, 3D turbulence) around the structure are taken in account by the
conceptual model, so again we will need some form of parameterization.

The aim of detail modelling is that the approach will lead to a correct discharge through the
structure given the energy level upstream and the water level downstream, but also that the
velocity is a good approximation of the increased flow due to the local constriction.
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5.10.2 Summarizing

In overview modelling the geometry of the hydraulic structure is only taken into account in the
coefficients of the discharge relations. In this indirect way it has effect on the energy losses
and the local flow field. The constriction of the flow is not taken into account in the wet cross
section at the hydraulic structure. In detail modelling also the wet cross section is reduced,
leading to local high velocities in the grid points (cell faces) where the hydraulic structure is
located.

In D-Flow FM, a mixture of overview and detail modelling is applied. The approach is mainly
based on overview modelling, in the sense that the local geometry of the structure is used
for computing the coefficients of the discharge relations that determine the energy losses at
the structure. However, as a slight improvement to the concept of overview modelling, the
local velocity at the structure is computed by dividing the discharge over the structure, by the
reduced cross-sectional flow area, resulting in an increased velocity at the structure, as is
common for detail modelling. This increased velocity can then be used in e.g. in the local
advection term to take into account the flow acceleration over the structure and the effect this
may have on local flow patterns, e.g. the emergence of horizontal recirculations (for which
sufficient resolution is required).

5.11 Flow resistance: bedforms and vegetation

[yet empty]

5.12 Restart file

The restarting functionality in D-Flow FM enables a so-called warm start of a simulation so that
it starts smoothly. A "perfect restart" simulation should mean that the results of a restarted
simulation run should be the same as the original simulation run (the one which produced
the rst-files for the current restart simulation) during the same time period. An example of a
perfect restart is shown in Figure 5.2, where the original simulation is from 0s to 40s. A restart
file (i.e. rst-file) is produced every 20s. Then the restart simulation begins at 20s, with the
rst-file at 20s of the original simulation. A perfect restart simulation will give the same results
as the original simulation between 20s and 40s.

Figure 5.2: Illustration of a "perfect restart" simulation.

The quantities in a rst-file should provide the necessary flow information to be able to make a
proper restart. The table below gives an overview of all quantities in a rst-file.
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Table 5.1: Restart file, array names with their description.

Array name in code Description

s1 water levels at new time level

s1_bnd water levels at new time level at open boundary

s0 ∗ water levels at old time level

s0_bnd water levels at old time level at open boundary

FlowElem_bl bed level

bl_bnd bed level at open boundary

unorm normal velocity at new time level

u0 ∗ normal velocity at old time level

ucx cell center velocity in x-direction

ucy cell center velocity in y-direction

ucz cell center velocity in z-direction (3D)

czs Chezy roughnes

q1 discharge at new time level

ww1 upward velocity on flow link at new time level

qw vertical flux through interface

sqi cell centred incoming flux

squ cell centred outgoing flux

taus Total bed shear stress

vicwwu vertical eddy viscosity

tureps1 turbulent kinetic energy dissipation

turkin1 turbulent kinetic energy

sa1 salinity at new time level

tem1 temperature at new time level

constituents all transport quantities at new time level

Remark 5.12.1. Variables with a ∗ mark will be further explained in the following subsection.
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5.12.1 Usage of variables in a restart file

In this subsection, we present more details about how some variables in a restart file (rst-file)
are used in a restart simulation.

5.12.1.1 Usage of water level variable s0 in a restart file

The water level variable at the previous time step s0 in a restart file is used in a restart
simulation in three ways:

1 in the initialization stage of restart simulation: for providing the initial output in the his and
map files.

2 in the computation stage of a restart simulation: for computing depth averaged flow ele-
ment centre velocity, which in turn affects the computation of the Coriolis force when the
second order Adams-Bashforth scheme is used (Newcorio = 1, 0 < Icoriolistype < 40,
Corioadamsbashfordfac > 0).

3 also in the computation stage of a restart simulation, when computing the relative wind
(Relativewind > 0): s0 affects the computation via tangential velocity component.

5.12.1.2 Usage of normal velocity variable u0 in a restart file

The normal component of the velocity at the previous computational time step, u0, is used in
a restart simulation in three ways:

1 to compute the initial flow element centre velocity, such that it can be written to the history
file. That is, variables x_velocity and y_velocity, in his-file ("ucx, ucy" in the code). This is
in the initialization stage of a restart simulation.

2 influencing when used in the second order Adams-Bashforth scheme for the Coriolis force.
This is in the computation stage of a restart simulation (Newcorio = 1, 0 < Icoriolistype <
40, Corioadamsbashfordfac > 0).

3 used when computing the relative wind (Relativewind > 0), via the tangential component
of velocity. This is also in the computation stage of a restart simulation.

More explanation about these three ways are as follows.

5.12.1.2.1 Initial flow element centre velocity in the his-file

Figure 5.3 shows the usage of variable u0 from a rst-file to compute the initial flow element
centre velocity for the his-file output. In this figure, assume that in an original simulation, the
his-file and rst-file are written every 20s. The computational time step is 10s. Using the rst-file
that is written at 20s, a restart simulation is done. So, as what a "perfect restart" requires, from
20s to 40s, the results of the restart simulation should give the same results as the original
simulation, this also includes the initial flow element centre velocities of the restart simulation.

Let’s focus on the initial time of the restart simulation, i.e. 20s. At this time, we look at the
x-component of the flow element centre velocity, i.e. variable x_velocity in his-file, and "ucx"
in the codes. We need initial "ucx" to be the same as "ucx" at 20s of the original simulation.
In the original simulation, there is a computational time step from 10s to 20s, as seen in
Figure 5.3. At the beginning of this time step, i.e. at 10s, "ucx" is computed with the normal
velocity at 10s, i.e. u1 of 10s (see subroutine "setucxucyucxuucyunew"), which equals to u0
of 20s. "ucx" is not changed before the his-file is written at 20s.

For "ucy" the similar situation happens. This is how u0 from a rst-file is used in the initialization
stage of a restart simulation.
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Figure 5.3: The usage of u0 from a rst-file to compute initial flow element centre velocity
for his-file output.

5.12.1.2.2 Calculating Coriolis force using the second order Adams-Bashforth scheme

When the model considers the Coriolis force, then in the governing shallow water equations,
a Coriolis force term is added in the momentum equation. This term can be written as follows
(see, e.g., Walters Roy A. (2009)):

fc(u) := fpẑ × ua(u), (5.45)

where fp := 2Ω sinϕ is the Coriolis parameter, ẑ is the upward unit vector, and ua(u) is the
depth-averaged horizontal velocity, which are "ucxq" and "ucyq" in D-Flow FM codes and are
computed using flow velocity u, which responds to "u1" in D-Flow FM codes, in subroutine
"setucxucyucxuucyunew".

Now we discuss the solution approach applied in D-Flow FM code for this term. A second
order Adams-Bashforth scheme is used to discretize the Coriolis force term.

For now we only consider the Coriolis force in the momentum equation. So we exclude other
terms of the momentum equation and write it as

du

dt
= −fc(u). (5.46)

For ease of notation in the time discretization, we further simplify the problem using equidistant
timesteps h and consider the normal/projected scalar velocity component u. Then if we use
a one-step Euler’s method on Equation (5.46), we can obtain:

un+1 − un

h
= −Fc(u

n),

→ un+1 = un − hFc(u
n), (5.47)

where superscripts n and n + 1 denote time steps, and Fc(u) is the discretization value of
the Coriolis force term.

If we use the second order Adams-Bashforth scheme for Equation (5.46), we can obtain

un+1 = un − h[
3

2
Fc(u

n)− 1

2
Fc(u

n−1)],

= un − hFc(u
n)− 1

2
h[Fc(u

n)− Fc(u
n−1)]. (5.48)

Comparing Eq. (5.48) to the one-step Euler’s method Eq. (5.47), we see that the Adams-
Bashforth scheme is the one-step Euler’s scheme with a correction term 1

2
h[Fc(u

n)−Fc(u
n−1)].
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From this scheme, we can see that to compute the flow velocity of the next time step n + 1,
it requires velocity not only of the current time step n, but also the velocity of the previous
time step n− 1 via Fc(u

n−1). Therefore, when we restart a simulation, at the initial time step
(n = 0), to compute the velocity of next time step (n + 1 = 1), the velocity of the previous
time step (n− 1 = −1), i.e. u0 from the rst-file, is also necessary.

In our D-Flow FM code, the second order Adams-Bashforth scheme is implemented by first
checking the value of Fc(u

n−1) (which equals 0 at n = 0 in a normal non-restarted simula-
tion):

⋄ If Fc(u
n−1) ̸= 0 then

un+1 = un − hFc(u
n)− 1

2
h[Fc(u

n)− Fc(u
n−1)], (5.49)

it is actually the second order Adams-Bashforth Equation (5.48).
⋄ If Fc(u

n−1) = 0 then

un+1 = un − hFc(u
n), (5.50)

i.e. do not consider the correction term 1
2
h[Fc(u

n)− Fc(u
n−1)] in this situation, and the

second order Adams-Bashforth scheme becomes a one-step Euler’s method in this case.

The above schemes can be seen from the codes as shown in Figure 5.4, where "fvcoro"
and "fvcor" are Fc(u

n−1) from the previous time step, and Fc(u
n) of the current time step,

respectively. "Corioadamsbashfordfac" typically equals 0.5.

Figure 5.4: D-Flow FM codes for the Adams-Bashforth scheme on the Coriolis force term.

Remark 5.12.2. Note that the above check Fc(u
n−1) = 0 is not entirely consistent. It is

intended to detect timestep n = 0 of a non-restarted simulation, but it will also succeed if
not time n = 0, but instead when initial velocity u0=0. This now unnecessarily reduces to
first-order Euler.

5.12.1.2.3 Relative wind calculation

When the model uses "relative wind" for the wind stress, then u0 from the rst-file is also
used for the computation of the relative wind stress. The wind stress enters the momentum
equation of the shallow water equations, for more details we refer to chapter 6, where the
definition of the relative wind is stated as:

ũ10 = u10 − uj. (5.51)

Now we look at the D-Flow FM codes to see how u0 from the rst-file influences the computa-
tion of a restart simulation.
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Algorithm (1) shows that in the initialization stage of a restart simulation, the tangential compo-
nent velocity "v" is computed using u0 from the rst-file. In Algorithm (2) when the computation
starts, this tangential velocity "v" is used to compute wind stress "wdsu" at the beginning of
one user timestep. When the first computational time step starts, u0 is overwritten by u1.
However, in subroutine "setextforcechkadvec", it uses "wdsu" which was still computed by u0
from the rst-file.

Algorithm 1 The usage of u0 in the initialization stage of the restart model simulation.

In subroutine "flow_flowinit":

⋄ in subroutine "read_restart_from_map", u0 is read from a rst-file.

In subroutine "flow_initimestep" (see Algorithm (35)):

⋄ In subroutine "setumod" (see Algorithm (36)), with u0 it firstly computes "ucx" and "ucy",
which are then used to compute the tangential velocity component "v".

Algorithm 2 The usage of u0 in the first user timestep of the model simulation.

When initializing the first user timestep:

⋄ In subroutine "setwindstress", compute wind stress "wdsu" with the tangential velocity
"v" which was computed using u0.

Then run this user timestep:

⋄ In subroutine " flow_initimestep" (see Algorithm (35)), u0 is set to u1 from the last fin-
ished timestep, such that the new timestep can start. From this moment, u0 from rst-file
is not directly used anymore.

⋄ In subroutine "advecdriver", it calls subroutine "setextforcechkadvec" where the advec-
tion "adve" is computed with the wind stress "wdsu", which was computed with u0 from
the rst-file.

5.13 Overview of research keywords

In Table A.1 of the D-Flow Flexible Mesh User Manual an overview of keywords in the master
definition file is given that can be specified by the user. These keywords can be changed in
the Delft3D Flexible Mesh Suite or D-HYDRO Suite as well. Next, there are keywords that
cannot be specified yet by the Graphical User Interface of D-Flow FM. This mainly involves
keywords for 3D modelling, because the GUI isn’t ready yet for 3D modelling. These keywords
are listed in Table A.2 of the D-Flow Flexible Mesh User Manual.

In addition there are several research keywords in the computational kernel of D-Flow Flexi-
ble Mesh that should, in principle, not be changed by the user. These keywords haven’t been
documented yet, aren’t tested in the D-Flow FM testbenches and should be seen as tests.
Therefore, the use of default setting of these research keywords is strongly recommended.
Table A.3 in the D-Flow Flexible Mesh User Manual contains a detailed overview of the main
research keywords.
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D-Flow FM solves the two- and three-dimensional shallow-water equations. We will focus
on two dimensions first. The shallow-water equations express conservation of mass and
momentum

∂h

∂t
+∇ • (hu) = 0, (6.1)

∂hu

∂t
+∇ • (huu) = −gh∇ζ +∇ • (νh(∇u+∇uT)) +

τb + τw
ρ

. (6.2)

where ∇ =

(
∂

∂x
,
∂

∂y

)T

(i.e. two dimensional), ζ is the water level, h the water depth, u the

velocity vector, g the gravitational acceleration, ν the viscosity and ρ the water mass density.

τb is the bottom friction:

τb = − ρg

C2
∥u∥u, (6.3)

with C being the Chézy coefficient.

Similarly, τw is the wind friction acting at the free surface:

τw = Cdρa∥ũ10∥ũ10, (6.4)

ρa is the air density and Cd is air-water (or wind) friction coefficient. The wind velocity vector at
10 m above the free surface ũ10 can either be the absolute wind velocity ũ10 = u10 (which is
the default option), or it can be the wind velocity relative to the flow velocity ũ10 = u10 − u.
This second option can be chosen by the user using the keyword Relativewind. The
wind friction coefficient Cd is either prescribed as a constant or computed based on a relation
depending on the actual wind velocity. Several such formulations are available. These are
described in Section section 6.2.2.

Note that τw and τb have different signs.

Now we rewrite the time derivative of the momentum equation (Equation (6.2)) as:

∂hu

∂t
= h

∂u

∂t
+ u

∂h

∂t
(6.5)

The shallow water equations can then be written as:

∂h

∂t
+∇ • (hu) =0, (6.6)

∂u

∂t
+

1

h
(∇ • (huu)− u∇ • (hu)) =− g∇ζ +

1

h
∇ • (νh(∇u+∇uT))

+
1

h

τb + τw
ρ

, (6.7)

The equations are complemented with appropriate initial conditions and water level and/or
velocity boundary conditions. The boundary conditions are explained in section 6.4. The
initial conditions will not be discussed further.
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u1

u2

u4

z1

z3

z4

ζ2

u3

u5

z2

bl1

bl2

ζ1

hs1

hs2

Figure 6.1: Discretization of the water level ζk (at cell circumcenter), bed-levels zi (at
nodes) and blk (at cell circumcenter), water depth hk (= ζk − blk; at cell
circumcenter) and face-normal velocities uj (at faces).

1

2

3 41

2

3 4

5

1 2

(a) Top-view on Figure 6.1. Numbering of
cells, faces and nodes. The flow direction
through the face is positive from the left to
the right cell as defined by n.

j

L(j) R(j)

r(j)

l(j)

(b) Orientation of face j to the neighboring cells and
nodes.

Figure 6.2: Numbering of cells, faces and nodes, with their orientation to each other.

6.1 Topology of the mesh

In this section the connectivity between cells, faces and nodes is defined (topology) and how
the bed level is interpreted.

6.1.1 Connectivity

We will firstly introduce some notation that expresses the connectivity of computational cells,
faces and mesh nodes, see Figure 6.2b.

We say that

⋄ cell k contains vertical faces j that are in the set J (k),
⋄ cell k contains mesh nodes i that are in the set I(k),
⋄ face j contains mesh nodes l(j) and r(j), given some orientation of face j,
⋄ face j contains neighbors cells L(j) and R(j), given some orientation of face j.
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k

facenode

i ∈ I(k) j ∈ J (k) k ∈ {L(j),R(j)}

i ∈ {l(j), r(j)}
i j

cell

Figure 6.3: Connectivity of cells, faces and nodes

Thus, in the example of Figure 6.2:

J (1) = {1, 2, 3},
J (2) = {4, 1, 5},
I(1) = {1, 2, 3},
I(2) = {2, 4, 1},
l(1) = 2 and r(1) = 1,

l(2) = 2 and r(2) = 3,

. . . ,

l(5) = 2 and r(5) = 4,

L(1) = 1 and R(1) = 2,

L(2) = ∗ and R(2) = 1,

. . . ,

L(5) = 2 and R(5) = ∗

The orientation of face j with respect to cell k ∈ {L(j),R(j)} is accounted for by sj,k in the
following manner:

sj,k =

{
1, L(j) = k (nj is outward normal of cell k),

−1, R(j) = k (nj is inward normal of cell k),
(6.8)

where nj is the normal vector of face j, defined positive in the direction from cell L(j) to
R(j). In the example of Figure 6.2a s1,1 = 1 and s1,2 = −1.

The connectivity translates directly to administration in the D-Flow FM code as follows:
J (k): nd(k)%ln,

I(k): nd(k)%nod,

l(j): lncn(2,j), r(j): lncn(1,j),

L(j): ln(1,j), R(j): ln(2,j).
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6.1.2 Bed geometry: bed level types

The bed geometry is user defined by specifying the cell-centered values (bed level type
= 1), by its face-based values (bed level type = 2), or by the values at the mesh
nodes (other bed level types). In the first two cases, the bed is assumed piecewise constant.
In the other cases, the bed is assumed piecewise linear or piecewise constant, depending on
the "bed level type" and the term to be discretized at hand.

The bed geometry appears in the discretization of the governing equations by means of its
cell-centered value blk and its face-based values bl1j and bl2j . Given some orientation,
bl1j represents the left-hand side bed level at face j and bl2j the right-hand side bed level,
respectively. In such a manner a linear representation of the bed from bl1j to bl2j is obtained
at face j. It is used, for example, in the computation of the flow area Auj

as we will see in
Section Face-based water depth huj

.

Note: that for the sake of clarity we will not discuss one-dimensional modelling at this occa-
sion.

In case of bed level type "1", the cell-centered levels are (user) defined in blk and the node-
based levels zi from the mesh are disregarded. Similarly, for bed level type "2" the face-based
bed levels are defined in bluj

. In the other cases the bed levels zi are defined at the mesh
nodes. The cell-based bed levels blk are then derived from the nodal values as shown in
Algorithm (3). Refer to section 6.1.1 for the definitions of sets of nodes I(k) and faces J (k),
respectively.

How the face-based bed levels bl1j and bl2j are determined is shown in Algorithm (3). Refer
to section 6.1.1 for the definitions of L(j), R(j), r(j) and l(j) respectively.

The notation translates directly to administration in the D-Flow FM code as follows:
bl1j : bob(1,j),

bl2j : bob(2,j).

6.2 Spatial discretization

The spatial discretization is performed in a staggered manner, i.e. velocity normal components
uj are defined at the cell faces j, with face normal vector nj , and the water levels ζk at
cell centers k. See Figure 6.2 for an example. Note that in this example k ∈ {1, 2} and
j ∈ {1, 2, . . . , 5}.

6.2.1 Continuity equation

The continuity equation reads:

∂h

∂t
+∇ • (hu) = 0, (6.12)

and is spatially discretized as, see (Equation (6.6)):

dVk

dt
= −

∑
j∈J (k)

Auj
ujsj,k, (6.13)

. Where J (k) is the set of vertical faces that bound cell k and sj,k accounts for the orientation
of face j with respect to cell k, see section 6.1.1.
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Algorithm 3 setbobs: compute face-based bed-levels bl1j and bl2j and cell-based bed-level
blk

blk =



user specified, bed level type = 1,

min
j∈J (k)

(bluj
), bed level type = 2,

min
j∈J (k)

[
min(bl1j, bl2j)

]
, bed level type ∈ {3, 4, 5},∑

i∈I(k)
zi/

∑
i∈I(k)

1, bed level type = 6

zkuni, otherwise (this value is supplied to cells without

specified bed level).

(6.9)

bl1j =



max(blL(j), blR(j)), bed level type = 1,

bluj
, bed level type = 2,

zl(j), bed level type ∈ {3, 4, 5} ∧ conveyance type ≥ 1,
1
2
(zl(j) + zr(j)), bed level type = 3 ∧ conveyance type < 1,

min(zl(j), zr(j)), bed level type = 4 ∧ conveyance type < 1,

max(zl(j), zr(j)), bed level type = 5 ∧ conveyance type < 1,

max(blL(j), blR(j)), bed level type = 6.

(6.10)

bl2j =

{
zr(j), bed level type ∈ {3, 4, 5} ∧ conveyance type ≥ 1,

bl1j, otherwise.
(6.11)
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Aujhuj

min(bl1j, bl2j)

wuj

max(bl1j, bl2j)

ζiup(j)

l(j)

r(j)

Figure 6.4: Flow area Auj
and face-based water depth huj

Furthermore, Vk is the volume of the water column at cell k computed with Algorithm (22),
not discussed here, Auj

approximates the flow area of face j, computed with Algorithm (5),
and huj

is the water depth at face j, computed with Algorithm (4). Algorithms (5) and (4) will
be discussed momentarily.

Face-based water depth huj

In contrast to the bed, which may vary linearly for bed level types 3, 4 and 5 and conveyance
types ≥ 1, the water level is assumed constant within a face. The water level at the faces are
reconstructed from the cell-centered water levels with an upwind approximation. The face-
based water depth huj

is then defined as the maximum water depth in face j, see Figure 6.4.
It is computed with Algorithm (4).

Algorithm 4 sethu: approximate the face-based water depth huj
with an upwind reconstruc-

tion of the water level at the faces

huj
=

{
ζL(j) −min(bl1j, bl2j), uj > 0 ∨ uj = 0 ∧ ζL(j) > ζR(j),

ζR(j) −min(bl1j, bl2j), uj < 0 ∨ uj = 0 ∧ ζL(j) ≤ ζR(j).
(6.14)

Example

In the example of Figure 6.1, the water level at face j, assumed constant in the face as
indicated in the figure, is approximated by:

ζuj
=


ζ2 if u1 < 0

max(ζ1, ζ2) if u1 = 0

ζ1 if u1 > 0

(6.15)

Remark 6.2.1. We will see later in Equation (6.123) that the time-integration of the continuity
equation is implicit/explicit. Nonetheless, the upwind direction of huj

is based on the velocity
at the beginning of the time-step only.

Remark 6.2.2. The upwind reconstruction of huj
from the cell-centered water levels is a

first-order approximation (possibly based on the incorrect upwind direction, see previous re-
mark). Higher-order reconstruction is not available at this moment, regardless of the option
limtyphu.

44 of 207 Deltares



DRAF
T

Numerical approach

Wet cross-sectional area Auj

By the flow area Auj
the wet cross-sectional area of the face j is meant. Since the bed level

in face j is linearly varying from bl1j to bl2j , and the water in the face is assumed at constant
level min(bl1j, bl2j) + huj

, the wet area can be computed with Algorithm (5). Note that wuj

Algorithm 5 setau: compute the flow area Auj

∆blj = max(bl1j, bl2j)−min(bl1j, bl2j), (6.16)

Auj
=

{
wujhuj

, if ∆blj < δwuj,

wujhuj
min(

huj

∆blj
, 1)
(
1− 1

2
min(

∆blj
huj

, 1)
)
, otherwise.

(6.17)

is the width of face j, see Figure 6.4, and ∆blj is the cross-sectional bed variation.

Remark 6.2.3. The exception for the case ∆blj < δwuj with δ = 10−3 in Equation (6.17)
should maybe be reconsidered.

Remark 6.2.4. In case of bed level type 3 and conveyance types ≥ 1, the bed is assumed
lineary varying within a face, see Algorithm (3). This is accounted for in the computation of
the wet cross-sectional areas of the vertical faces, see Algorithm (5). A linearly varying bed,
on the other hand, is not accounted for in the computation of the water column volumes Vk in
Algorithm (22), without non-linear iterations (explained later). This seems inconsistent when
we are employing a finite volume approximation as in e.g. Equation (6.13).

Total area of a cell

The definition of variables to determined the total area of a computational cell are depicted in
Figure 6.5.

α 1

α
2

α
3

∆x2

∆
x
3

∆
x 1

2 1

3

w
u
2

wu3

w
u1

Ω1

Figure 6.5: Area computation for cell Ω1

The total area A of cell Ωk is determined as follows:

A(Ωk) =
∑

j∈J (Ωk)|L(j)=k

αj∆xjwuj +
∑

j∈J (Ωk)|L(j)̸=k

(1− αj)∆xjwuj (6.18)
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An example for area Ω1 is:

A(Ω1) =
1

2
α1∆x1wu1 +

1

2
α2∆x2wu2 +

1

2
(1− α3)∆x3wu3 (6.19)

6.2.2 Momentum equation

The momentum equation reads

∂u

∂t
+

1

h
(∇ • (huu)− u∇ • (hu)) =− g∇ζ +

1

h
∇ • (νh(∇u+∇uT))

+
1

h

τb + τw
ρ

, (6.20)

and is discretized at the faces and in face-normal direction, see Figure 6.6.

αj∆xj

∆xj

wuj

L(j) R(j)
nj

Figure 6.6: Computational cells L(j) and R(j) neighboring face j; water levels are stored
at the cell circumcenters, indicated with the +-sign

In this figure ∆xj is the distance between the two neigboring cell centers, i.e. ∆xj =
∥xR(j) − xL(j)∥, and wuj

is, as explained before, the width of face j.

Making use of the properties of an orthogonal mesh, the water level-gradient term projected
in the face-normal direction is discretized as

g∇ζ|j • nj ≈
g

∆xj

(ζR(j) − ζL(j)). (6.21)

The bed friction term is discretized as

1

h

τb
ρ

∣∣∣∣
j

• nj ≈ −g∥uj∥
C2ĥj

uj, (6.22)

where ĥj acts as a hydraulic radius for which the computation depends on the "conveyance
type". Its precise discretization is discussed later (see Algorithm (14) and Algorithm (15)).

The magnitude of the velocity is computed by: ∥uj∥ =
√

u2
j + v2j .

The wind friction is computed as:

1

h

τw
ρ

∣∣∣∣
j

• nj ≈ Cd
ρa
ρ

∥ũ10∥ũ10 • nj

huvj

. (6.23)
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where huvj is the distance-weighted water depth at the face, determined using the depths at
the adjacent cell centres hζL(j)

and hζR(j)
, and the non-dimensional distance αj of the cell

centres to the face, see Figure 6.6:

huvj = max(αjhζL(j)
+ (1− αj)hζR(j)

, εhζ
), (6.24)

where εhζ
is a threshold.

The wind velocity vector at 10 m above the free surface ũ10 can either be the absolute wind
velocity ũ10 = u10 (which is the default option), or it can be the wind velocity relative to the
flow velocity ũ10 = u10−uj , where uj is the full velocity vector at the face, and it equals to
αw,rel times the normal component of flow velocity uj and αw,rel times the tangential velocity
vj , determined using (6.50). Here, αw,rel is the factor for flow velocity in relative wind. Its
value can be specified by MDU keyword Relativewind under [wind]. Value 0 means
no relative wind, and value 1 means full flow velocity.

The definition of the wind friction coefficient Cd is described further below in the section on
Wind friction.

Furthermore, advection and diffusion are discretized as[
1

h
(∇ • (huu)− u∇ • (hu))− 1

h
∇ • (νh(∇u+∇uT))

]
j

•nj ≈ Aijuj+Aej. (6.25)

The terms Aij (implicit part) and Aej (explicit part) will be discussed in more detail hereafter.
These terms play an important role in the D-Flow FM code and are called advi and adve,
respectively.

Summing up, the spatial discretization of Equation (6.7) reads

duj

dt
= − g

∆xj

(
ζR(j) − ζL(j)

)
−Aijuj−Aej−

g∥uj∥
C2ĥj

uj+Cd
ρa
ρ

∥ũ10∥ũ10 • nj

ĥj

. (6.26)

Momentum advection

It would be a clear advantage if the momentum equation was discretized conservatively, es-
pecially for flows with discontinuities such as hydraulic jumps. This is not easily achieved in
case of staggered, unstructured meshes. Nonetheless, Perot (2000) shows how to achieve
momentum conservation in similar circumstances for the incompressible Navier Stokes equa-
tions. This approach is applied to the shallow water equations in Kramer and Stelling (2008)
and Kleptsova et al. (2010). However, subtleties exist in the formulations as pointed out in
Borsboom (2013). The various advection schemes in D-Flow FM differ on these subtleties.

The difficulty with the staggered layout on unstructured meshes is that we only solve the
momentum equation in face-normal direction. We could, in principle, formulate a control vol-
ume for each face-normal velocity, but are unable to define conservative fluxes, as we do
not solve for the whole momentum vector, as we would do with a collocated arrangement of
the unknowns. To this end, Perot (2000) pursues conservation of the full reconstructed cell-
centered momentum vector. The advection operator is firstly discretized at cell centers, as
if we were dealing with a collocated layout of our unknowns, and subsequently interpolated
back to the faces and projected in face-normal direction.

Remark 6.2.5. Perot (2000) shows that the reconstruction from face-normal quantities to
cell-centered vectors and the interpolation from cell-centered vector to face-normal quanti-
ties need to satisfy certain demands. We are not free to choose a reconstruction to our liking
and the accuracy may even be compromised on irregular meshes.
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The application of this approach to the shallow-water equations as in Kramer and Stelling
(2008) and Kleptsova et al. (2010) is non-trivial. Complicating matters significantly is that we
are not solving in conservative, but in primitive variables. As pointed out in Borsboom (2013),
the discretization of advection is subject to many subtleties. In D-Flow FM various advection
schemes exist that vary on these subtleties.

Remark 6.2.6. It’s fair to say that, formally speaking, none of the momentum advection
schemes in D-Flow FM is conservative in the sense of Perot (2000).

The approach in Perot (2000) is as follows. Given some cell k, assume that cell-centered
conservative advection is approximated by

∇ • (huu)|Ωk
≈ ak. (6.27)

Face-normal advection at face j is then interpolated from its neighboring cells L(j) and R(j)
as

∇ • (huu)|Γj
• nj ≈

(
αjaL(j) + (1− αj)aR(j)

)
• nj, (6.28)

where αj is the non-dimensional distance from the left cell center to the face, see Figure 6.6.
Note that the terms −u∇ • (hu) and 1

h
in Equation (6.25) are due to our non-conservative

formulation and do not appear in Equation (6.28). In the non-conservative formulation of
Equation (6.25), their discretization contributes significantly to the subtle differences in the
various schemes. See Borsboom (2013) for more details.

The cell-centered advection is discretized as

ak =
1

A(Ωk)

∑
j∈J (k)

uuj
qjsj,k, (6.29)

where uuj
is the reconstructed full velocity at the faces and A(Ωk) the area of the control

volume Ωk, i.e. the cell. It is reconstructed from the cell-centered velocities uc with an upwind
scheme, e.g.

uuj
=

{
uL(j), uj ≥ 0,

uR(j), uj < 0.
, (6.30)

or with a higher-order limited version, discussed later. The cell-centered velocities in turn are
reconstructed from the (primitive) face-normal velocities with Algorithm (8), also discussed
later. Furthermore, flux qj is derived from the face-normal velocity as

qj = Auj
uj, (6.31)

see also Algorithm (23), explained later when we will discuss the time discretization.

The term −u∇ • (hu) is the so-called "storage term" and is due to our non-conservative for-
mulation of the momentum equation. It originates from the substitution of the continuity equa-
tion in the conservatively formulated momentum equation. Glancing ahead at our temporal
discretization, we observe the following. If we want our discretization to be discretely conser-
vative, we need to substitute the continuity equation after spatial and temporal discretization,
see Equation (6.134) (explained later). This means that we require the fluxes in the storage
term to be identical to the fluxes in the discrete continuity equation, Equation (6.123), i.e.
qn+1
j , where n denotes the time level:

−u∇ • (hu)|nk ≈ − u

A(Ωk)

∑
j∈J (k)

qn+1
j sj,k, (6.32)
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where we do not mention at which time level term u
A(Ωk)

is to be evaluated. Equation (6.32)
leads to an implicit contribution to the discrete advection for θ > 0. However, in D-Flow FM
the storage term is always discretized explicitly in time. It is based on explicit fluxes qnj or on
qa

n
j , depending on the advection scheme.

Remark 6.2.7. Since the fluxes in the storage term are at the old time level, in contrast to
the fluxes in the continuity equation, advection in D-Flow FM is non-conservative for non-
stationary flows and θ > 0.

Given the discretization of the conservatively formulated advection of Eqns. (6.28) and (6.29)
and the storage term of Equation (6.32), the advection can now be composed in general form
as

Aej = ALj

∑
l∈J ∗(L(j))

q∗l sl,L(j)uul • nj − q∗∗l sl,L(j)(1− θl,L(j))u
∗
Lj +

ARj

∑
l∈J ∗(R(j))

q∗l sl,R(j)uul • nj − q∗∗l sl,R(j)(1− θl,R(j))u
∗
Rj,

(6.33)

and

Aij = −ALj

∑
l∈J ∗(L(j))

q∗∗l sl,L(j)θl,L(j) − ARj

∑
l∈J ∗(R(j))

q∗∗l sl,R(j)θl,R(j), (6.34)

where J ∗, q∗l , q∗∗l , θl,{L,R}(j), u∗
{L,R}j

, ALj
, ARj

vary for the different advection schemes as

described in Algorithm (6) and J i is the set of faces with inward fluxes, i.e.

J i(k) = {j ∈ J (k)|ujsj,k < 0} (6.35)

and

huvj = max(αjhζL(j)
+ (1− αj)hζR(j)

, εhζ
), (6.36)

where εhζ
is a threshold. θl,L(j) and θl,R(j) are determined by their face-based Courant

numbers σj,L(j) and σj,R(j) as follows

θl,{L,R}(j) =
1

1− σj,{L,R}(j)
(6.37)

where σj,L(j) and σj,R(j) are computed as:

σj,L(j) =


1.4∆t|qaj |

αjVL(j)+(1−αj)VR(j)
,

∑
j∈J (L(j))

1 = 3,

∆t|qaj |
αjVL(j)+(1−αj)VR(j)

, other,
(6.38)

and

σj,R(j) =


1.4∆t|qaj |

αjVL(j)+(1−αj)VR(j)
,

∑
j∈J (R(j))

1 = 3,

∆t|qaj |
αjVL(j)+(1−αj)VR(j)

, other,
(6.39)

respectively.
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Algorithm 6 advec: compute advection terms of the form[
1
h
(∇ • (huu)− u∇ • (hu))

]
j

• nj ≈ Aijuj +Aej

compute higher-order accurate reconstructions of face-based velocity vector uu from cell-
centered velocity vectors uc with Algorithm (12)
compute Ae and Ai:

Aej = ALj

∑
l∈J ∗(L(j))

q∗l sl,L(j)uul • nj − q∗∗l sl,L(j)(1− θl,L(j))u
∗
Lj+

ARj

∑
l∈J ∗(R(j))

q∗l sl,R(j)uul • nj − q∗∗l sl,R(j)(1− θl,R(j))u
∗
Rj (6.40)

Aij = − ALj

∑
l∈J ∗(L(j))

q∗∗l sl,L(j)θl,L(j) − ARj

∑
l∈J ∗(R(j))

q∗∗l sl,R(j)θl,R(j)

(6.41)
See Table 6.1 for the definition of the variables used in this algorithm.

Where Note that VAuL(j) and VAuR(j) are undefined.

Cell center interpolation

We saw in the previous section that the cell-centered reconstructed full velocity vectoruc plays
an important role in the discretization of the momentum advection. This section elaborates on
its computation.

Following Perot (2000), and taking a cell k as a control volume, the full cell-centered veloc-
ity vector can be reconstructed from the face-normal components uj by using the following
approximation

uck ≈
1

A(Ωk)

∫
Ωk

∇ • (u(x− xck)) dΩ =
1

A(Ωk)

∫
∂Ωk

(x− xck)u • n dΓ, (6.42)

where Ωk is the control volume, i.e. the cell k, ∂Ωk the boundary of the control volume,
A(Ωk) its area and n is an outward orthonormal vector.

Remark 6.2.8. We will not discuss whether uck represents a cell-averaged or nodal value.
Nevertheless, Equation (6.42) is a second order approximation if the center point is sufficiently
close to the mass center of the control volume. Note: that in our case the center point is the
cell circumcenter, which can deviate considerably from the mass center for irregular meshes.

The discretization of Equation (6.42) in cell k is

uck =
∑

j∈{l∈J (k)|sl,k=1}

wcLjuj +
∑

j∈{l∈J (k)|sl,k=−1}

wcRjuj (6.43)

with weight vectors wcLj and wcRj are computed with Algorithm (7), where bAk is the bed
area of cell k.

Remark 6.2.9. Cells that are cut by a dry-wet interface do not get any special treatment,
i.e. dry faces (with formally undefined velocities) still appear in the reconstruction, with as-
sumed zero velocity. Hence, cell centered velocity vectors near the dry-wet interface may be
inconsistent with the local flow.

The cell centered velocities are computed with Algorithm (8), where hζk is the cell centered
water depth at cell k, defined as hζk = ζk − blζ . Note that uq is a ‘discharge-averaged’
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Algorithm 7 setlinktocenterweights: compute weight vectors wcLj and wcRj in the cell-
center reconstruction of Equation (6.43)

wcLj =
αj∆xjnjwuj

A(ΩL(j))
(6.44)

wcRj =
(1− αj)∆xjnjwuj

A(ΩR(j))
(6.45)

Algorithm 8 setucxucyucxuucyu: reconstruct cell centered velocity vectors uc and uq, and
set first-order upwind fluxes uL

u

uqk =
1

hζk

 ∑
j∈J (k)|L(j)=k

hujwcLj
uj +

∑
j∈J (k)|R(j)=k

hujwcRj
uj

 (6.46)

if iPerot = 2 then

uck = uqk (6.47)
else

uck =
∑

j∈J (k)|L(j)=k

wcLjuj +
∑

j∈J (k)|R(j)=k

wcRjuj (6.48)

end if

uuj =


ucL(j), qaj > 0

ucR(j), qaj < 0

0, qaj = 0

(6.49)
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Table 6.1: Definition of the variables used in Algorithm (6)
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reconstructed velocity vector. It is used for the tangential velocity vj component at the faces:

vj =
(
αjuqL(j) + (1− αj)uqR(j)

)
× nj (6.50)

Remark 6.2.10. It is not hard to see that the interpolation of uq may be inconsistent, depend-
ing on the "bed level type", see Algorithms (3) and (4), and the bed geometry itself.

Note that Algorithm (8) also sets a first-order upwind approximation of uu, necessary in mo-
mentum advection, see Equation (6.29). Higher order corrections are added in Algorithm (12),
explained later.
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wuj

R(j)

∆xj

L(j)
αnRjwuj

r(j)

l(j)

Figure 6.7: Nodal interpolation from cell-centered values; contribution from face j to node
r(j); the shaded area indicates the control volume Ωn.

Nodal interpolation

In the discretization of horizontal momentum diffusion and in the bed friction for "conveyance
type" ≥ 3, node-based velocity vectors un appear. This section elaborates on their compu-
tation.

The nodal velocity vectors are interpolated from the cell-centered velocity vectors uc, which
were, in turn, interpolated from the face-normal velocities u • n, see the previous section.

Given some available cell-centered data, say Φc (e.g. one of the components of the velocity
vector), we can define a control volume as indicated in Figure 6.7 and interpolate to the nodes,
say Φn, as follows:

Φn ≈ 1

2A(Ωn)

∫
Ωn

∇ • (Φ(x− xn)) dΩ =
1

2A(Ωn)

∫
∂Ωn

Φ(x− xn) • n dΓ, (6.51)

where

Ωn is the node-based control volume,
∂Ωn the boundary of the control volume,
dΓ its boundary,
A(Ωn) the area of the control volume,
n the outward normal vector and
xn are the node coordinates.

Remark 6.2.11. Equation (6.51) is a second order approximation if the node is located suf-
ficiently close to the mass center of the control volume. In the example of Figure 6.7 this is
indeed the case, but not necessarily for general meshes.

The discretization of Equation (6.51) at node i is

Φi =
∑

j∈{l|l(l)=i}

wLj

1

2
(ΦcL(j) + ΦR(j)) +

∑
j∈{l|r(l)=i}

wRj

1

2
(ΦL(j) + ΦR(j)), (6.52)
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with weights wiLj and wiRj computed as

wiLj =
1
2
αiLj∆xjwuj∑

l∈{m|l(m)=l(j)}

1
2
αiLj∆xlwul +

∑
l∈{l|r(m)=l(j)}

1
2
αiRl∆xlwul

(6.53)

wiRj =
1
2
αnRj∆xjwuj∑

l∈{m|l(m)=r(j)}

1
2
αiLl∆xlwul +

∑
l∈{m|r(m)=r(j)}

1
2
αiRl∆xlwul

(6.54)

Note that αiLj∆xj and αiRj∆xj approximate the components of (x − xi) • n in Equa-
tion (6.53) and Equation (6.54) for node i and face j, which in D-Flow FM are computed
as

αiLj =
∥1
2
(xζL(j) + xζR(j))− xi l(j)∥

∥1
2
(xζL(j) + xζR(j))− xi l(j)∥+ ∥1

2
(xζL(j) + xζR(j))− xir(j)∥

, (6.55)

αiRj = 1− αnLj, (6.56)

where

xζk are the coordinates of cell-center k and
xi are the coordinates of mesh node i, respectively.

Remark 6.2.12. A more straightforward approach, employing the properties of an orthogonal
mesh and using wuj := ∥xir(j) − xi l(j)∥, would be:

αiLj =

(
1
2
(xζL(j) + xζR(j))− xi l(j)

)
• (xir(j) − xi l(j))

wu
2
j

. (6.57)

In D-Flow FM the interpolation of cell-centered velocity vectors to nodal velocity vectors is as
in Equation (6.51). That is, when "jacomp" ̸= 1 and we do not consider mesh boundaries.
The quantity Φ is to be replaced by both components of the velocity vector, respectively, i.e.

ui =
∑

j∈{l|l(l)=i}

wiLj

1

2
(ucL(j) + ucR(j)) +

∑
j∈{l|r(l)=i}

wiRj

1

2
(ucL(j) + ucR(j))

(6.58)

When "jacomp" = 1, however, the two components of the velocity vector (ux, uy), get dif-
ferent weights. If we say uc =: (ucx, ucy)

T and un =: (unx, uny)
T, then the interpolation

becomes as performed by Algorithm (9). The weights wnxL, wnxR, wnyL
and wnyR

are
computed with Algorithm (10), where ex and ey are the unit vectors in x- and y-direction
respectively. The exceptions at mesh boundaries remain unmentioned.

Remark 6.2.13. For nodes not on the mesh boundary, it is unclear why the weights in Al-
gorithm (9) for vector interpolation should differ from Equation (6.53) and Equation (6.54) for
scalar interpolation, which is the case if "jacomp" = 1 in Algorithm (10). The option "jacomp"
= 1 may need to be reconsidered.
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Algorithm 9 setcornervelocities: interpolate nodal velocity vectors un = (unx, uny)
T from

cell-centered velocity vectors uc = (ucx, ucy)
T

unxi =
∑

j∈{l|l(l)=i}

wnxLj

1

2
(ucxL(j) + ucxR(j)) +

∑
j∈{l|r(l)=i}

wnxRj

1

2
(ucxL(j) + ucxR(j)) (6.59)

unyi
=

∑
j∈{l|l(l)=i}

wnyLj

1

2
(ucyL(j) + ucyR(j)) +

∑
j∈{l|r(l)=i}

wnyRj

1

2
(ucyL(j) + ucyR(j)) (6.60)

Algorithm 10 setlinktocornerweights: compute weights wnxLj , wnxRj , wnyLj
and wnyRj

in
the nodal interpolation of Algorithm (9), Equation (6.59) and Equation (6.60)

χxj =

{
2max(10−6, |nj • ex|), jacomp = 1

1, otherwise
(6.61)

χyj =

{
2max(10−6, |nj • ey|), jacomp = 1

1, otherwise
(6.62)

if r(j) and l(j) are not boundary nodes then

wnxLj =
1
2
αnLj∆xjwujχxj∑

l∈{m|l(m)=l(j)}

1
2
αnLj∆xlwulχxj +

∑
j∈{l|r(m)=l(j)}

1
2
αnRl∆xlwulχxj

wnyLj
=

1
2
αnLj∆xjwujχyj∑

l∈{m|l(m)=l(j)}

1
2
αnLj∆xlwulχyj +

∑
l∈{m|r(m)=l(j)}

1
2
αnRl∆xlwulχyj

wnxRj =
1
2
αnRj∆xjwujχxj∑

l∈{m|l(m)=r(j)}

1
2
αnLl∆xlwulχxj +

∑
l∈{m|r(m)=r(j)}

1
2
αnRl∆xlwulχxj

wnyRj
=

1
2
αnRj∆xjwujχyj∑

l∈{m|l(m)=r(j)}

1
2
αnLl∆xlwulχyj +

∑
l∈{m|r(m)=r(j)}

1
2
αnRl∆xlwulχyj

else
unmentioned, at least one of the nodes is a boundary node

end if

The various variables used in the nodal interpolation have the following names in the D-
Flow FM code:
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RL2j

L(j) R(j)
nj

CLj

kL2j

kL1j

RL1j

Figure 6.8: Higher-order reconstruction of face-based velocity uuj , from the left

xζk
• ex: xz(k), xζk

• ey: yz(k),

xni • ex: xk(i), xni • ey: yk(i),

unxi: ucnx(i), unyi
: ucny(i),

αnLj : acn(2,j), αnRj : acn(1,j),

wnxLj : wcnx4(j), wnyLj
: wcny4(j),

wnxRj : wcnx3(j), wnyRj
: wcny3(j).

Higher-order reconstruction: limtypmom

A higher-order accurate discretization of advection may be achieved by higher-order accurate
reconstruction of the face-based full velocity vectors uu in Equation (6.29). A first-order ap-
proximation is already available from Algorithm (8), Equation (6.49). This section elaborates
on the higher-order corrections added to uu.

The reconstruction at the faces is a one-dimensional reconstruction on a line through both
neighboring cells L(j) and R(j). Besides the neighboring cell-centered values, a third value
is sought on the line, which is interpolated from cells connected to the left-hand side neigh-
boring cell L(j) for reconstruction from the left, and cells connected to the right-hand side
neighboring cell R(j) for reconstruction from the right, respectively. We will refer the these
third locations on the line as CLj and CRj respectively. For the reconstruction along the line
a one-dimensional limiter is used with the purpose to obtain a TVD scheme. In D-Flow FM
various limiters are available by means of the option limtypmom.

Remark 6.2.14. It is not immediately clear why a TVD limiter based on interpolated values
would guarantee TVD properties of the primitive variables.

We will firstly consider the stencil for the reconstruction. Assume that we want to reconstruct
at face j from the left, then the cells in the stencil are {R(j), L(j), kL1j, kL2j}. An example
is shown in Figure 6.8. If we let RL1j measure the distance from the cell center kL1j to the
line through L(j) and R(j), and similarly for RL2j , then the cells kL1j and kL2j are chosen
according to the rules stated in Algorithm (11). These cells are the cells whose circumcenters
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are closest to the line through L(j) and R(j).

The values in cells kL1j and kL2j are used to interpolate a value at CLj , which is located on
the line trough the left and right cell centers L(j) and R(j). The higher-order reconstruction
is then performed based on the values of cells CLj , L(j) and R(j) in a one-dimensional
fashion.

A value, say Φ, at CLj , i.e. ΦCLj
(being one of the two cell-centered velocity vector compo-

nents as we will see later), is interpolated as follows:

ΦCLj
= sL1jΦkL1j

+ sL2jΦkL2j
. (6.63)

The weights are computed with Algorithm (11). Note that the exception for RL1j
< 0.1∆xj

Algorithm 11 setupwslopes: determine the cells kL1 and kL2, and compute weights sL1 and
sL2 in Equation (6.63) for the higher-order reconstruction from the left at the faces, and similar
for reconstruction from the right to obtain kR1, kR2, sR1 and sR2

if reconstruction from the left then
determine the cells kL1j and kL2j according to the following rules

⋄ cells kL1j and kL2j each share a face with cell L(j)
⋄ the cell center is at the left-hand side from cell center L(j), i.e. (xζk

• nj < 0 for
k ∈ {kL1j, kL2j}

⋄ cell center kL1j is closer to the line through cell centers L(j) and R(j) than, or as
close as, any other cell that obeys the two rules above

⋄ cell center kL2j is closer to the line through cell centers L(j) and R(j) than, or as
close as, any other cell that is not kL1j and obeys the first two rules above and results
in a intersection point CLj that is sufficiently far from cell center L(j), as expressed
by (xCLj

− xζR(j)
) • (xζL(j) − xζR(j)) > 1.2

if RL1j
< 0.1∆xj and the "advection type" of face between kL1j and L(j) /∈ {6, 8}

then
sL1j = 1, sL2j = 0, γLj =

∆xj

∥xζL(j)−xζkL1j
∥

else if cell kL2j found and the "advection type" of faces between kL1j and L(j), and
between kL2j and L(j)/∈ {6, 8} then

sL1j =
∥xCLj

−xζkL2j
∥

∥xζkL1j
−xζkL2j

∥ , sL2j = 1− sL1j , γLj =
∆xj

∥xζL(j)−xCLj
∥

else
sL1j = 0, sL2j = 0, γLj = 0 (no higher-order reconstruction)

end if
else

similar as reconstruction from the left by replacing L with R, vice versa, and taking the
reversed orientation into account

end if

only adds one cell to the stencil for higher-order reconstruction, mimicking stencils on e.g.
curvilinear meshes. Note also the exception for the (face-specified) advection types 6 and 8,
not discussed further.

The interpolation of Equation (6.63) is applied to the Cartesian components of the velocity
vector. In such a manner values at uxCLj

and uyCLj
are obtained. The reconstruction is

then performed with Algorithm (12). Note that in Algorithm (12), Equation (6.66) and Equa-
tion (6.67), γLj accounts for the non-uniform spacing along the line through cell centers L(j)
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Algorithm 12 sethigherorderadvectionvelocities: higher-order accurate reconstructions of
face-based velocity vector uu from cell-centered velocity vectors uc

interpolate velocity vectors on a line through cell centers L(j) and R(j), from the left and
from the right:

uCLj
= sL1juckL1j

+ sL2juckL2j
(6.64)

uCRj
= sR1juckR1j

+ sR2juckR2j
(6.65)

if qaj > 0 then
compute slope ratio in limiter, for each velocity component

rx =
ucR(j)x

− ucL(j)x

ucL(j)x
− uCLjx

1

γL j

(6.66)

ry =
ucR(j)y

− ucL(j)y

ucL(j)y
− uCLj y

1

γL j

(6.67)

apply limiter Ψ to each velocity component and reconstruct the velocity vector at the face

uuj = ucL(j)+αj max(1−∆t|uj|
∆xj

, 0)

(
Ψ(rx) 0

0 Ψ(ry)

)
(ucR(j)−ucL(j)) (6.68)

else
reconstruction from the right similar as reconstruction from the left by replacing L with R,
vice versa, αj by 1− αj and taking the reversed orientation into account

end if

and R(j). It is computed along with the stencil and weights in Algorithm (11) and similarly for
γRj .

In D-Flow FM various limiters (Ψ in Algorithm (12)) are available. They are set with the
keyword limtypmom, see Table 6.2.

Table 6.2: Various limiters available in D-Flow FM for the reconstruction of face-based
velocities in momentum advection

limtypmom limiter Ψ(r)

0 first-order upwind 0

1, 5, 15 minmod max(min(r, 1), 0)

2 Van Leer r+|r|
1+|r|

4, 14 monotonized central max(min(min(2r, 1+r
2
), 2), 0)

Remark 6.2.15. In the D-Flow FM limiters 1 to 4 are formulated using the property Ψ(r) =
rΨ(1

r
) for symmetric limiters.

Remark 6.2.16. Since the limiter functions are non-linear in general, and the velocity field
is represented by face-normal components, the component-wise reconstruction is orientation
dependent. Hence, the discretization is not invariant for a rotation of the coordinate frame.
This may be circumvented by reconstructing face-normal and tangential components instead.

The translation of the various variables introduced here to the D-Flow FM code is as follows:
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kL1j : klnup(1,j), kR1j : klnup(4,j),

kL2j : klnup(2,j), kR2j : klnup(5,j),

sL1j : slnup(1,j), sR1j : slnup(4,j),

sL2j : slnup(2,j), sR2j : slnup(5,j),

γLj : slnup(3,j), γRj : slnup(6,j).

Momentum diffusion

The momentum diffusion term in Equation (6.7) is

1

h
∇ • (νh(∇u+∇uT)).

In D-Flow FM, this term is modified as

1

hp
∇ • (νhp(∇u+∇uT)),

where

p =


1, istresstype = 3,

1, istresstype = 5,

0, otherwise.

(6.69)

Remark 6.2.17. It is unclear why, for istresstype ̸= 3 ∧ istresstype ̸= 5, a
modified, incorrect form of momentum diffusion, i.e. p ̸= 1, is employed in D-Flow FM.

Obviously, the momentum diffusion term needs to be discretized at the faces and projected in
face normal direction. The approach undertaken is similar to the discretization of momentum
advection. First a cell-centered conservative discretization of ∇ • (νh(∇u +∇uT)) is for-
mulated which is subsequently interpolated to the faces, projected in the face normal direction
and divided by a water height h to bring it in non-conservative form.

If we call the cell-centered discretization dk, or more precisely

∇ •
(
νhp(∇u+∇uT)

)∣∣
Ωk

≈ dk, (6.70)

then the face-normal momentum diffusion at face j is interpolated from its neighboring cells
L(j) and R(j) as

∇ • (νhp(∇u+∇uT))
∣∣
Γj

• nj ≈
(
αjdL(j) + (1− αj)dR(j)

)
• nj, (6.71)

where again αj is the non-dimensional distance from the left cell center to the face, see
Figure 6.6.

The cell-averaged diffusion in cell k can be written in the usual manner as

∇ •
(
νhp(∇u+∇uT)

)∣∣
Ωk

=
1

A(Ω)

∫
∂Ωk

νhp(
∂u

∂n
+∇u • n) dΓ, (6.72)
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where A(Ωk) = bAk is the bed area of cell k. This expression is discretized as

∇ •
(
νhp(∇u+∇uT)

)∣∣
Ωk

≈ dk =

1
bAk

∑
j∈J (k)

tujwujsj,k, p = 0,

1
bAk

∑
j∈J (k)

tujwuj min(hζL(j), hζR(j))sj,k, p = 1, istresstype = 3,

1
bAk

∑
j∈J (k)

tujAujsj,k, p = 1, istresstype = 5.

(6.73)

Note that tuj is the viscous stress at face j. By using n = (nx, ny)
T, setting s = n⊥ =

(−ny, nx)
T and noting that

∇u•n =

(
nx −ny

ny nx

) n •
∂u

∂n

n •
∂u

∂s

 =

(
nx

2 nxny

nxny ny
2

)
∂u

∂n
+

(
−nxny −ny

2

nx
2 nxny

)
∂u

∂s
,

the viscous stresses tuj for istresstype ̸= 6 are computed as

tuj = νj

((
1 + nx

2
j nxjnyj

nxjnyj 1 + ny
2
j

)
ucR(j) − ucL(j)

∆xj

+(
−nxjnyj −ny

2
j

nx
2
j nxjnyj

)
un l(j) − unr(j)

wuj

)
.

(6.74)

For istresstype = 6 the viscous stresses are completely expressed in normal and tan-
gential components and essentially the same expression as Equation (6.74) is obtained.

Note that uck (here with k ∈ {L(j),R(j)}) and uni (here with i ∈ {l(j), r(j)}) are cell-
centered and node-based velocity vectors, respectively. Their reconstruction from the face-
normal velocity components and interpolation has been discussed in the foregoing sections,
see Algorithms (8) and (9) respectively.

The contribution of the horizontal momentum diffusion term to the discrete momentum equa-
tion Equation (6.26) is finally obtained by bringing it in non-conservative form and interpolation
at the faces

Aej = −
(
αjdL(j)

HL
p
j

+
(1− αj)dR(j)

HR
p
j

)
• nj, (6.75)

as performed by Algorithm (13). It shows that the choice for HLj and HRj depends on
istresstype.

Remark 6.2.18. Momentum diffusion is discretized in a similar fashion as momentum advec-
tion, namely based on a cell-centered expression of the conservative formulation, interpolation
to the faces and bringing it into a non-conservative form, i.e. dividing it by the water depth.
Consequently, the discretizations of the terms 1

HLj
and 1

HRj
, due to the non-conservative for-

mulation, are expected to equal their counterparts in momentum advection. However, they do
not, as can be seen by comparing Algorithm (13) with Algorithm (6).

Remark 6.2.19. In the discretization of the diffusive fluxes, the area of face j is approximated
bywuj min(hζL(j), hζR(j)) for istresstype ’3’. It is unclear why the actual cross-sectional
area Auj does not suffice. For the other istresstypes, see Remark 6.2.17.
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Algorithm 13 setumod|momentum diffusion: compute momentum diffusion terms of the form
nj •

[
− 1

hp

(
νhp(∇u+∇uT)

)]
j
≈ Aej

compute viscous stresses

tl = νl

[(
1 + nx

2
l nxlnyl

nxlnyl 1 + ny
2
l

)
ucR(l) − ucL(l)

∆xl

+

(
−nxlnyl −ny

2
l

nx
2
l nxlnyl

)
un l(l) − unr(l)

wul

]

Aej = −

 αj

bAL(j)HLj

∑
l∈J (L(j))

νl Al tl • nj sl,L(j) +
1− αj

bAR(j)HRj

∑
l∈J (R(j))

νl Al tl • nj sl,R(j)


with Al, HLj , HRj defined by:

istresstype Al HLj HRj

2, 4, 6 wul 1 1

3 wul min(hζL(l), hζR(l))
1
2
(hζL(j) + hζR(j))

1
2
(hζL(j) + hζR(j))

5 Aul hζL(j) hζR(j)

Turbulence modelling: Smagorinsky, Elder

For istresstype 2 and 3, the viscosity coefficient νj can be computed with Elder’s formula
or a Smagorinsky model. Note that the background viscosity is added, not mentioned here
further for simplicity. In the first case, it is

νj = E
κ

6
huj

√
g

C

√
u2
j + v2j , (6.76)

where E is the user-specified Elder coefficient and C is the (time- and space varying) Chézy
coefficient. And in case of the Smagorinsky model

νj =
(
CS

√
∆xjwuj

)2 √
2
∂un

∂n

2

+

(
∂un

∂t
+

∂ut

∂n

)2

+ 2
∂ut

∂t

2

∣∣∣∣∣∣
j

, (6.77)

where CS is a user-specified Smagorinsky coefficient and the velocity derivatives at face j
are approximated with finite differences similarly to Equation (6.74).

Limitation of viscosity coefficient

The explicit time integration of momentum diffusion is subject to a time-step limitation for
numerical stability. We however maintain our time step and limit the eddy viscosity coefficient
instead. We assume that it is sufficient to consider the model equation

∂u

∂t
= ∇ • (ν∇u) (6.78)

We also assume that it is sufficient to only consider a cell-based discretization, for cell k it
would be

uc
n+1
k − uc

n
k

∆t
=

1

V n
k

∑
j∈J (k)

νjAu
n
j

un
R(j) − un

L(j)

∆xj

sj,k. (6.79)

Remark 6.2.20. If we disregard the differences due the interpolation to the faces, and the
missing terms ∇ • (hν∇uT), the discretization of the model equation only conforms to the
form of the momentum diffusion term if istresstype=5, and if Vk = bAkhζk (no non-linear
iterations, see Algorithm (22)), as can be seen by comparing with Algorithm (13).
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Equation (6.79) can be rewritten as

uc
n+1
k =

1− ∆t

V n
k

∑
j∈J (k)

νjAu
n
j

∆xj

uc
n
k +

∆t

V n
k

∑
j∈J (k)

νjAu
n
j

∆xj

un
O(k,j), (6.80)

where O(k, j) = is the cell that shares face j with cell k, i.e.

O(k, j) = L(j) + R(j)− k. (6.81)

We require that

0 ≤ ∆t

V n
k

∑
j∈J (k)

νjAu
n
j

∆xj

≤ 1, (6.82)

which is satisfied if we limit the viscosity coefficient by

νj ≤
1

N

∆xj

Au
n
j∆t

min(V n
L(j), V

n
R(j)), (6.83)

where N is the maximum number of faces in a cell. It is set to N = 5, although cells with
more than five faces may occasionally be encountered.

Boundary stresses: irov

The viscous stress in Equation (6.73) at the closed boundaries need special attention, where
three conditions that may be applied:

irov=0: full slip,
irov=1: partial slip,
irov=2: no slip.

The boundary conditions are further explained in Section 6.4.7.

Perot’s reconstruction of the cell-center velocity:

uc =
1

Vk

∑
j∈J (k)

uj1j,k (xj − xc) (6.84)
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Bed friction

The bottom friction can be expressed on the flow links as follows,

1

h

τb
ρ

∣∣∣∣
j

• nj ≈ −g∥uj∥
C2ĥj

uj, (6.85)

where ĥj = Aj/Pj and Aj = hj dyj , as shown in Figure 6.9 The Chézy formula for deter-
mining the velocity is:

uj = C

√
ĥji (6.86)

qj = AjC

√
ĥji =

Ajĥ
2/3
j

n

√
i (6.87)

Q =
∑
j

qj =

∑
Ajĥ

2/3
j

n

√
i = K

√
i (6.88)

U =
Q

A
=

K

A

√
i =

1
n

∑
Ajĥ

2/3
j∑

Aj

√
i (6.89)

Cfu =
g

C2ĥj

= g

( ∑
Aj

1
n

∑
Ajĥ

2/3
j

)2

= g

(
A

K

)2

(6.90)

where ĥj and K vary for different conveyance schemes. The differences in the various

schemes are in the way of defining the hydraulic radius ĥj and K in Equation (6.90).

In D-Flow FM we have as a default setting of BedlevType=3. This is applied for estimation
of the bedlevel at flow links. It assumes variation in cross flow direction of the local waterdepth,
flow velocity and friction coefficient. This is called the analytic 2D conveyance method (type
3). This method shows good grid convergence. A more simple variant is 1D conveyance
(type 2). Another method is only by taking the variation of the waterdepth into account across
flow links, which leads to a hydraulic radius equal to the cross-sectional area divided by the
wet perimeter (type 1). These methods are described in Algorithm (14). For derivation of
formulations in Algorithm (14) we refer the reader to Appendix A.

When assuming a constant bedlevel at a flow link, one can either average between bedlevels
at waterlevel points (type 0), or between the levels of two cornerpoints (type -1). The former
one leads to lower bed friction in general, because the bedlevel at a waterlevelpoint is taken
as the lowest connect link level. Formulations for conveyance types -1 and 0 are shown in
Algorithm (15).

Wind friction

The wind friction can be expressed on the flow links as follows,

1

h

τw
ρ

∣∣∣∣
j

• nj ≈ Cd
ρa
ρ

∥ũ10∥ũ10 • nj

huvj

. (6.99)

where huvj is the distance-weighted water depth at the face, determined using the depths at
the adjacent cell centres hζL(j)

and hζR(j)
, and the non-dimensional distance αj of the cell

centres to the face, see Figure 6.6:

huvj = max(αjhζL(j)
+ (1− αj)hζR(j)

, εhζ
), (6.100)
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dyj

Pj

hj

Figure 6.9: Cross sectional bed bathemetry perpendicular to the flow direction.

Algorithm 14 getprof2D: compute conveyance types 1, 2 and 3.

ĥj = Aj/Pj (6.91)

γi = nαi

(
1 + α2

i

)1/4
(6.92)

γ′
i = nαi

(
1 + α2

i + α
′2
i

)1/4
(6.93)

K2 =
3

8

(
h
8/3
i − h

8/3
i+1

)
/γi (6.94)

K3 =

(
βi − hi

δ

αi

)
K2 +

3

11

δ

αiγ′
i

(
h
11/3
i − h

11/3
i+1

)
(6.95)

Cfu =


g/C2ĥj, conveyance type = 1,

g (Aj/K2)
2 , conveyance type = 2,

g (Aj/K3)
2 , conveyance type = 3,

(6.96)

Algorithm 15 setcfuhi: compute conveyance types 0 and -1.

Cfu =
g

C2ĥj

(6.97)

where

ĥj =

{
max (εh, huj), conveyance type = −1,

max (εh, huvj), conveyance type = 0,
(6.98)
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where εhζ
is a threshold.

By default, the effective wind velocity ũ10 is simply chosen equal to the wind velocity at 10 m
above the free surface u10 and the wind shear stress is computed as:

1

h

τw
ρ

∣∣∣∣
j

• nj ≈ Cd
ρa
ρ

∥u10∥
huvj

u10 • nj, (6.101)

In D-Flow FM, there is the possibility to compute wind shear stress based on the relative
wind velocity, i.e. relative to the flow velocity. This becomes important when the flow is
predominantly forced by the wind and the flow velocity (in 3D, at the free surface) approaches
the wind velocity. In this way, one can avoid that the wind still forces the flow, despite a zero
(or small) difference between flow and wind speed. For the relative wind formulation, the
equations above are modified to be:

1

h

τw
ρ

∣∣∣∣
j

• nj ≈ Cd
ρa
ρ

∥u10 − uj∥
huvj

(u10 − uj) • nj, (6.102)

This second option can be chosen by the user using the keyword Relativewind.

The wind shear stress coefficient Cd can either be specified directly by the user or computed
using a number of wind drag formulations. The following options are available:

⋄ a constant drag coefficient,
⋄ a linearly varying drag coefficient according to Smith and Banke (1975),
⋄ a piecewise linearly varying drag coefficient according to Smith and Banke (1975),
⋄ a dependency according to Charnock (1955),
⋄ a dependency according to Hwang (2005a) and Hwang (2005b).

For a Smith & Banke type formulation, the additional entries for the Cdbreakpoints and
Windspeedbreakpoints need to be prescribed by the user.

In the following sections, the implementations of these different options are described.

Smith & Banke type formulation

When specifying a Smith & Banke type dependency, the definition as sketched in Figure 6.10
should be kept in mind.
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Figure 6.10: Prescription of the dependency of the wind drag coefficient Cd on the wind
speed is achieved by means of at least 1 point, with a maximum of 3 points.

From this sketch, it can be seen that the wind drag is considered as dependent on the wind
speed in a piecewise linear way. The options, that are facilitated in this respect, are:

⋄ define one set of coordinates (breakpoint A), specifying a constant drag coefficient, valid
for all wind speeds,

⋄ define two sets of coordinates (breakpoints A and B), specifying a linearly varying depen-
dency for one range of wind speeds,

⋄ define three sets of coordinates (breakpoints A, B and C), specifying a piecewise linear
dependency for two ranges of wind speeds.

Remark that for the latter two options, the drag coefficient is taken constant for wind speeds
lower/higher than the lowest/highest specified wind speed, with a drag coefficient equal to the
drag coefficient associated with the lowest/highest specified lowest/highest wind speed. In
case of three breakpoints, the expression reads:

Cd (U10) =



CA
d , U10 ≤ UA

10,

CA
d +

(
CB

d − CA
d

) U10 − UA
10

UB
10 − UA

10

, UA
10 ≤ U10 ≤ UB

10,

CB
d +

(
CC

d − CB
d

) U10 − UB
10

UC
10 − UB

10

, UB
10 ≤ U10 ≤ UC

10,

CC
d , UC

10 ≤ U10,

(6.103)

By means of the entries Cdbreakpoints and Windspeedbreakpoints, the coor-
dinates of the breakpoints (see Figure 6.10) can be specified. Typical values associated
with the Smith and Banke (1975) formulation are Cd = 6.3 × 10−4 for U = 0 m/s and
Cd = 7.23× 10−3 for U = 100 m/s.

Charnock formulation

The Charnock formulation (see Charnock (1955)) is based on the assumption of a fully devel-
oped turbulent boundary layer of the wind flow over the water surface. The associated wind
speed profile follows a logithmic shape. In the Charnock formulation, the wind speed is con-
sidered at 10 meters above the free water surface, hence yielding the following expression:
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U10

u∗
=

1

κ
ln

(
z10
z0

)
(6.104)

with κ the Von Kármán constant, z10 the distance to the water surface (equal to 10 m), u∗ the
friction velocity and U10 the wind speed at 10 m above the water surface. The drag coefficient
Cd is defined as:

Cd =
u2
∗

U2
10

. (6.105)

Charnock (1955) has proposed to represent the friction of the water surface as z0 according
to:

z0 =
b u2

∗
g

, (6.106)

with g the gravitation acceleration and b a specific constant. Charnock (1955) has proposed
b = 0.012. The value of the constant b can be specified in the MDU-file by the user by means
of one single value for Cdbreakpoints. Since the above relation yields an implicit relation
for u∗, the system is solved for iteratively. Below gives more details about how Cd is computed
in D-Flow FM codes.

Let the left-hand side of Equation (6.104) to be s:

s :=
U10

u∗
, (6.107)

where, recalling Equation (5.51) and ??, we have

U10 = ||ũ10||,
= ||u10 − relativewind×Uj||, (6.108)

here, Uj is flow velocity, depending on both normal component uj and tangential component
vj .

Then we have

u∗ =
U10

s
. (6.109)

From Equation (6.105), we obtain

Cd =
u2
∗

U2
10

= (
1

s
)2. (6.110)

This means that if we know s, then we can obtain Cd.

From Equation (6.106), we obtain

z0 =
bu2

∗
g

=
bU2

10

gs2
. (6.111)

Putting Equation (6.107), Equation (6.109) and Equation (6.111) into Equation (6.104), we
have

U10

u∗
=

1

κ
ln(

z10
z0

),

s =
1

κ
ln(

z10gs
2

bU2
10

), (z10 and g are constants). (6.112)
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As we can see, Equation (6.112) is a nonlinear equation of s. To solve for s, a Newton-
Raphson method is used. Rewrite Equation (6.112) as:

f(s) := s− 1

κ
ln(r(s)) = 0, (6.113)

where

r(s) =
z10gs

2

bU2
10

. (6.114)

Then a Newton-Raphson method updates the solution s at a new time step by

sn+1 = sn − f(sn)

f ′(sn)
. (6.115)

we compute the derivative

f ′(s) = 1− 1

κ

1

r(s)
r′(s),

= 1− 1

κ

bU2
10

z10gs2
z10g

bU2
10

2s,

= 1− 1

κ

2

s
,

= 1− 2

κs
,

=
κs− 2

κs
. (6.116)

Now we put Equation (6.116) into the Newton-Raphson Equation (6.115), we have the itera-
tion scheme that is used in the D-Flow FM codes :

sn+1 = sn − f(sn)

f ′(sn)
,

= sn − κsn

κsn − 2
[sn − 1

κ
ln(

z10gs
n2

bU2
10

)],

= sn − κsn2

κsn − 2
+

κsn

κsn − 2

1

κ
ln(

z10gs
n2

bU2
10

),

=
κsn2 − 2sn − κsn2

κsn − 2
+

κsn

κsn − 2

1

κ
ln(

z10gs
n2

bU2
10

),

=
−2sn

κsn − 2
+

sn

κsn − 2
ln(

z10gs
n2

bU2
10

),

=
sn

κsn − 2
[−2 + ln(

z10gs
n2

bU2
10

)]. (6.117)

Here we give a summary of D-Flow FM codes implementation of the Charnock formula-
tion. The D-Flow FM codes calculate Cd in subroutine "setcdwcoefficient" (within subroutine
"setwindstress"). When using the Charnock formulation in subroutine "setcdwcoefficient", the
Newton-Raphson method is carried out as follows:
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Step 1. n = 0: set initial values s−1 = 0, s0 = 19.6.
Step 2. n = 0, 1, 2, 3, ..., do iterations: if ||sn − sn−1|| ≥ (10−4sn), then do Scheme (6.117).

This iteration stops until the if-condition is violated.
Step 3. The above iterations results in sn+1, and use it to compute Cd by Equation (6.110).

Hwang formulation

The dynamic roughness could also be related to the steady state wave conditions of the flow
field under consideration. The connection of the wave parameters with the drag coefficient as
elaborated by Hwang (2005a) is available within D-Flow FM through ICdtyp = 5, given a
wave field. The Hwang-formulation interprets the user defined wind speed as the wind speed
at 10 m above the water surface.

The drag coefficient is computed as:

Cd =

[
1

κ
ln

(
kpz10
kpz0

)]−2

(6.118)

with z10 = 10 m, κ the Von Kármán constant. With wavelength scaling, kpz0 is the natural
expression of the dimensionless roughness, where kp is the wave number of the spectral
peak, computed on the basis of the actual water depth and the provided peak period Tp as
wave field. Further following Hwang (2005a),

kpz0 = π exp
(
−κC−0.5

λ/2

)
(6.119)

in which Cλ/2 is the drag coefficient at half the wavelength above surface. This parameter
Cλ/2 is computed as:

Cλ/2 = A10

(
ωpU10

g

)a10

(6.120)

in which A10 = 1.289 × 10−3, a10 = 0.815, U10 the wind speed at 10 m above the water
surface and ωp the wave peak frequency (ωp = 2π/Tp). Thus, the drag coefficient Cd is
defined.

Coriolis forces

[yet empty]

6.3 Temporal discretization

The spatial discretization is, as explained in section 6.2, performed in a staggered manner,
i.e. velocity normal components uj are defined at the cell faces j, with face normal vector nj ,
and the water levels ζk at cell centers k. If advection and diffusion are spatially discretized as
in Equation (6.25)[

1

h
(∇ • (huu)− u∇ • (hu))− 1

h
∇ • (νh(∇u+∇uT))

]
j

• nj ≈ Aijuj +Aej,

then the temporal discretization of Equation (6.7) is(
1

∆t
+Ai

n
j +

g∥ûj∥
C2h

)
un+1
j =

1

∆t
un
j −

gθj
∆xj

(
ζn+1

R(j) − ζn+1
L(j)

)
−Ae

n
j −

g(1− θj)

∆xj

(
ζnR(j) − ζnL(j)

)
, (6.121)
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where superscript n denotes the time level, ûj is obtained by substituting ûj = (ûj,u
n
j

•

n⊥
j )

T, un+1
j = ûj , θj = 0 in Equation (6.121) and solving for ûj , and ∆xj = ∥xR(j) −

xL(j)∥ measures the distance between the two water level points of cells L(j) and R(j) of
face j. Note that we have assumed that the face normal nj is in the direction from cell L(j)
to R(j).

The velocity update of Equation (6.121) is summarized as

un+1
j = −fu

n
j (ζ

n+1
R(j) − ζn+1

L(j) ) + ru
n
j , (6.122)

where fu
n
j and ru

n
j are determined iteratively by Algorithm (16).

Algorithm 16 furu: compute fu
n
j and ru

n
j in un+1

j = −fu
n
j (ζ

n+1
R(j) − ζn+1

L(j) ) + ru
n
j

û
(0)
j = uj

n

p = 0

while
(
p < MAXITER ∧ |û(p)

j − û
(p−1)
j | > ε

)
∨ i = 0 do

p = p+ 1

frj =
g

C2h

√
(û

(p−1)
j )2 + (vjn)2

Bu =
1

∆t
+Aij + frj

fu
n
j =

1

Bu

gθj
∆xj

ru
n
j =

1

Bu

(
1

∆t
un
j −Aej −

g(1− θj)

∆xj

(
ζnR(j) − ζnL(j)

))
û
(p)
j = −fu

n
j (ζ

n
R(j) − ζnL(j)) + ru

n
j

end while

Here MAXITER = 4, ε = 10−2 is a tolerance and vj is the tangential velocity component at
face j whose computation is discussed on a different occasion.

The continuity equation is discretized as

V n+1
k − V n

k

∆t
= −

∑
j∈J (k)

Auj
n
(
θjuj

n+1 + (1− θj)uj
n
)
sj,k, (6.123)

where J (k) is the set of faces that bound cell k and sj,k accounts for the orientation of face
j with respect to cell k, i.e.

sj,k =

{
1, L(j) = k (nj is outward normal of cell k),

−1, R(j) = k (nj is inward normal of cell k).
(6.124)

Furthermore, V n+1
k is the volume of the water column at cell k and Auj approximates the

flow area of face j, i.e.

Auj = hujwj, (6.125)
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with huj the water level at face j (details not discussed here) and wj the width of face j.

Substitution of Equation (6.122) in Equation (6.123) yields the following system for the water
column volume at the next time instant:

V n+1
k − V n

k

∆t
+
∑

j∈J (k)

Au
n
j θjfu

n
j ζn+1

k −
∑

j∈J (k)

Au
n
j θjfu

n
j ζn+1

O(k,j) =

−
∑

j∈J (k)

Au
n
j

[
(1− θj)u

n
j + θjru

n
j

]
sj,k, (6.126)

where O(k, j) = is the cell that shares face j with cell k, i.e.

O(k, j) = L(j) + R(j)− k. (6.127)

Remark 6.3.1. The flow area of face j, Auj , always appears explicitly in the continuity equa-
tion, Equation (6.123).

The water level equation, Equation (6.126), is summarized as

V n+1
k − V n

k

∆t
+Bn

k ζn+1
k +

∑
j∈J (k)

Cn
j ζn+1

O(k,j) = dnk , (6.128)

where the coefficients Bn
k (diagonal entries), Cn

j (off-diagonal entries) and dnk (right-hand
side) are computed by Algorithm (17).

Algorithm 17 s1ini: compute the matrix entries and right-hand side in the water level equation
V n+1
k −V n

k

∆t
+Bn

k ζn+1
k +

∑
j∈J (k)

Cn
j ζn+1

O(k,j) = dnk , Equation (6.128)

Cn
j =− Au

n
j θjfu

n
j

Bn
k =−

∑
j∈J (k)

Cn
j

dnk =−
∑

j∈J (k)

Au
n
j

[
(1− θj)u

n
j + θjru

n
j

]
sj,k

The continuity equation is only applied at water level cells that are or may become (partially)
wet at the next time level. These cells are marked with kfs(k) = 1 and is based on the water
height of the surrounding faces, see Algorithm (18).

Algorithm 18 setkfs: mark the water level cells that are or may become (partially) wet with
kfs(k) = 1

kfs(k) =

{
0, huj = 0 ∀j ∈ J (k),

1, otherwise.

The resulting set of water level cells is called K, see Algorithm (19). The continuity equation
is only applied at cells k for k ∈ K.

In order to solve Equation (6.128), we need to express the V n+1
k volume of the water column

at cell k at time level n + 1 in terms of the water level ζn+1. Since this relation is non-linear
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Algorithm 19 pack_matrix: determine the set K of water level cells for which the continuity
equation is solved

mark wet/dry cells, Algorithm (18)
K = {k : kfs(k) = 1}

in general, Equation (6.128) is solved iteratively by means of Newton iterations. We firstly
linearize the expression for the volume of the water column and obtain for some iteration p.

V
n+1(p+1)
k = V

n+1(p)
k + A

n+1(p)
k

(
ζ
n+1(p+1)
k − ζ

n+1(p)
k

)
, (6.129)

where A
n+1(p)
k is the wet bed area of cell k at (iterative) time level n + 1(p). Substitution in

Equation (6.128) yields(
1

∆t
A

n+1(p)
k +Bn

k

)
ζ
n+1(p+1)
k +

∑
j∈J (k)

Cn
j ζ

n+1(p+1)
O(k,j) =

dnk −
1

∆t

(
V

n+1(p)
k − V n

k − A
n+1(p)
k ζ

n+1(p)
k

)
,

(6.130)

which is summarized as

Br
n+1(p)
k ζ

n+1(p+1)
k +

∑
j∈J (k)

Cr
n
j ζ

n+1(p+1)
O(k,j) = dr

n+1(p)
k , (6.131)

where the coefficients Br
n
k (diagonal entries), Cr

n
j (off-diagonal entries) and dr

n
k (right-hand

side) are computed by Algorithm (20).

Algorithm 20 s1nod: compute the matrix entries and right-hand side in the water level equa-
tion Br

n+1(p)
k ζ

n+1(p+1)
k +

∑
j∈J (k)

Cr
n
j ζ

n+1(p+1)
O(k,j) = dr

n+1(p)
k , Equation (6.131)

Br
n+1(p)
k =Bn

k +
1

∆t
A

n+1(p)
k

Cr
n
j =Cn

j

dr
n+1(p)
k =dnk −

1

∆t

(
V

n+1(p)
k − V n

k − A
n+1(p)
k ζ

n+1(p)
k

)
.

Note that we did not describe the water level boundary conditions in Algorithm (20).

The unknown water levels k ∈ K in Equation (6.131) are solved with a Krylov solver as will
be explained in section 6.3.1.

During the iterative process, the water level ζn+1(p+1)
k may have dropped below the bed level

blk resulting in a negative water height. In these cases the time step is repeated with either
a reduced time step with factor f = 0.7 (type 1), or the water level cell k is eliminated from
the system by setting the water levels of its bounding faces to zero (type 2, default), see
Algorithm (21).

Having computed a new iterate of the water level, the water column volume V
n+1(p+1)
k and

wet bed area A
n+1(p+1)
k of cell k are computed with Algorithm (22). Note that if no non-linear

iterations are performed, the wet bed area is set equal to the cell bed area bAk.
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Algorithm 21 poshcheck: check positivity of water height

if ζn+1(p+1)
k < blk then

if type 1 then
∆t = f∆t,
repeat time-step

else if type 2 (default) then
hu

n
j = 0, j ∈ J (k).

repeat time-step
end if

end if

Algorithm 22 volsur: compute water-column volume V n+1(p+1)
k and wet bed area An+1(p+1)

k

if no non-linear iterations then

V
n+1(p+1)
k =bAk max(ζ

n+1(p+1)
k − blk, 0)

A
n+1(p+1)
k =bAk

else
compute actual wet bed area and water column volume of cell k based on a constant
water level in a cell and linearly varying bed levels at the faces
not elaborated further

end if

The time-step is finalized by employing Equation (6.122), see Algorithm (23). Two discharges
are computed at the next time level, namely

qn+1
j =Au

n
j

(
θju

n+1
j + (1− θj)u

n
j

)
, (6.132)

qa
n+1
j =Au

n
j u

n+1
j . (6.133)

Discharge qn+1
j satisfies the continuity equation Equation (6.123)

V n+1
k − V n

k

∆t
= −

∑
j∈J (k)

qn+1
j sj,k, (6.134)

and appears for example in the discretization of advection in Equation (6.7). The use of qa
n+1
j

is not discussed here, but it is important to note that it does not satisfy the continuity equation.

Algorithm 23 u1q1: update velocity un+1
j and discharges qn+1

j and qa
n+1
j

if hu
n
j > 0 then

un+1
j =− fu

n
j (ζ

n+1
R(j) − ζn+1

L(j) ) + ru
n
j (6.135)

qn+1
j =Au

n
j

(
θju

n+1
j + (1− θj)u

n
j

)
(6.136)

qa
n+1
j =Au

n
j u

n+1 (6.137)
else

un+1
j =0 (6.138)

qn+1
j =0 (6.139)

qa
n+1
j =0 (6.140)

end if
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The time-step is summed up in Algorithm (24).

Algorithm 24 step_reduce: perform a time step

while first iteration or repeat time-step (type 1) do
tn+1 = tn +∆t
compute fu

n
j and ru

n
j with Algorithm (16)

while first iteration or repeat time-step (type 2) do
compute the matrix entries Bn

k , Cn
j and right-hand side dnk in the water level equation

with Algorithm (17)
determine the set of water levels that need to be solved, Algorithm (19)
p = 0

ζ
n+1(0)
k = ζnk

while
(
max

k

∣∣∣ζn+1(p)
k − ζ

n+1(p−1)
k

∣∣∣ > ε ∧ not repeat time-step
)

∨ p = 0 do

p = p+ 1
compute the matrix entries Br

n
k , Cr

n
j and right-hand side dr

n
k in the water level

equation with Algorithm (20)
solve the unknown water levels and obtain ζ

n+1(p+1)
k , Algorithm (25)

check positivity of water height with Algorithm (21) and repeat time-step if necessary
with modified ∆t (type 1) or hu

n
j (type 2, default)

if not repeat time-step then
compute water-column volume V n+1(p+1)

k and wet bed area An+1(p+1)
k with Algo-

rithm (22)
end if

end while
end while

end while
ζn+1
k = ζ

n+1(p+1)
k

compute velocities un+1
j and discharges qn+1

j and qa
n+1
j are defined at the next time level,

Algorithm (23)

6.3.1 Solving the water level equation

The unknown water levels k ∈ K in Equation (6.131) are solved with a Krylov solver, Algo-
rithm (25).

Algorithm 25 solve_matrix: solve the unknown water levels in Equation (6.131)

perform Gauss elimination to reduce the number of unknowns in the system
solve system with Algorithm (26)
perform the Gauss substitution and obtain ζ

n+1(p+1)
k , k ∈ K

set ζn+1(p+1)
k = ζ

n+1(p)
k , k /∈ K

However, prior to solving the system, a Minimum Degree algorithm is applied to reduce the
system size. The somewhat misleading terms Gauss elimination and substitution in Algo-
rithm (25) are due to the minimum degree algorithm. The permutation order is only computed
during the initialization of the computations. It will not be discussed further.

The (reduced) water level equation to be solved has the form of

As = d, (6.141)
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where according to Equation (6.131)

As =


Br1 ζ1 +

∑
j∈J (1)

Crj ζO(1,j)

Br2 ζ2 +
∑

j∈J (2)

Crj ζO(2,j)

...

 (6.142)

and d = (dr1, dr2, . . . )
T. Note that we have omitted the superscripts for the sake of brevity.

Note also that for simplicity, we assumed all unknowns ζ1, ζ2, . . . appear in the solution vec-
tor, although due to the minimum degree algorithm and possible dry cells, they do not.

The system is solved by a preconditioned Conjugate Gradient method as shown in Algo-
rithm (26). The preconditioner P can either be diagonal scaling, or an incomplete Cholesky
decomposition.

Algorithm 26 conjugategradient: solve water level equation with a preconditioned Conjugate
Gradient method

compute preconditioner P
compute initial residual r(0) = d− As(0)

compute maximum error ε = ∥r(0)∥∞
apply preconditioner Pz

(0)
r = r(0)

set p(0) = z
(0)
r

compute inner product
〈
r(0), z

(0)
r

〉
i = 0
while ε > tol do

compute Ap(p)

compute
〈
p(p), Ap(p)

〉
α(p) =

〈
r(p),z(p)

r

〉
⟨p(p),Ap(p)⟩

s(p+1) = s(p) + α(p)p(p)

r(p+1) = r(p) − α(p)Ap(p)

compute maximum error ε = ∥r(p+1)∥∞
apply preconditioner Pz

(p+1)
r = r(p+1)

if ε > tol then
compute

〈
r(p+1), z

(p+1)
r

〉
β(p+1) =

〈
r(p+1),z(p+1)

r

〉
〈
r(p),z(p)

r

〉
p(p+1) = z

(p+1)
r + β(p+1)p(p)

p = p+ 1
end if

end while

Remark 6.3.2. The iterations in Algorithm (26) could be stopped after the computation of
the absolute error. However, we want the possibility to base our stopping criterion on the
preconditioned residual ∥z(p)

r ∥∞. For now, we will base our stopping criterion only on the
residual r(p).
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6.3.2 Solving the transport equation

The advection and diffusion terms in the transport equation are integrated explicitly in time.
However, for 2D models with large horizontal diffusion coefficients this might lead to a large re-
duction of the time step. Therefore, an implicit time integration scheme has been implemented
for the horizontal diffusion term as well. To that purpose TransportAutoTimestepdiff
has been introduced. Via TransportAutoTimestepdiff = 3 the implicit time inte-
gration scheme is activated, while the explicit time integration scheme is the default. The
latter can be switched on via keyword TransportAutoTimestepdiff = 0. In this
case the horizontal diffusion coefficient is probably reduced in order to statify the stability
condition. Another approach is to apply TransportAutoTimestepdiff = 1. Then,
the horizontal diffusion coefficient isn’t reduced, but the time step is probably reduced in or-
der to statify the stability condition. If so, then the simulation will require more computation
time. Depending on the application the user should choose the most suitable for for keyword
TransportAutoTimestepdiff.

The implementation of the implicit time integration of the horizontal diffusion term leads to a
similar system of equations as for the continuity equation. This equation has been described
in Equation (6.131). Therefore, the same solver is applied as for the continuity equation. The
different iterative solvers for this system of equations are described in section 6.3.1. As a
result, the functionality of parallel computing for the implicit time integration of the horizontal
diffusion term is automatically available as well.

6.3.3 Automatic time step estimation for 2D and 3D applications

The maximum time step that can be applied in D-Flow FM is limited because of the explicit
horizontal advection scheme. So, the Courant number must be smaller than 1. For a 1-
dimensional transport problem on a uniform grid, the Courant restriction reads:

CFL =
u∆t

∆x
< 1 (6.143)

with u the transport velocity [m/s], ∆t the time step [s] and ∆x the grid size [m].

On an unstructured grid, cells may have varying shapes and grid sizes, so this formulation
must be adapted. One of the considerations here is about computational efficiency and has
to do with the implicit pressure solve and the drying and flooding. The issue is that in the
implicit solve step, the new pressure or water level must remain above the local bed level.
If this is not so, the result of that solve step is incorrect, so we leave the cell out of the
system of equations and solve again. Of course, re-solving should be minimized for optimal
computational efficiency.

To minimize the number of times of re-solve, the for time step n+1 is chosen such that the
occurrence of computing water levels below local bed is minimal. We do this by checking the
cell volume of the previous step n against the sum of the outflowing horizontal fluxes squhn.

For a single layer computation, we get the maximum allowable cell time step:

∆tn+1 =
V n

squhn
(6.144)

in which squh represents the sum of the horizontal outflowing fluxes. We take the mini-
mum time step over all horizontal cells, min2D() , and multiply this with the user specifiable
Courant number CFL. In D-Flow FM the default value for this parameter is 0.7. This leads
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to

∆tn+1 = CFLmin2D

(
V n

squhn
k

)
(6.145)

which is time step criterion for a single layer computation (i.e. depth-averaged model).

For multiple layer simulations the vertical advection must be considered as well. For the
implicit vertical advection scheme, no extra restrictions on the vertical are required. So, we
can just use the single layer criterion evaluated over all k layers:

∆tn+1 = CFL min3D

(
V n

squhn
k

)
(6.146)

This will in general lead to a smaller time step than the 2D criterion because of the higher than
average velocities near the surface. For explicit vertical advection, the time step must also be
restricted by vertical transport velocities. We do this by checking squhvnk , which is the sum
of horizontal and vertical outflowing fluxes. Then, the time step becomes:

∆tn+1 = CFL min3D

(
V n

squhvn
k

)
(6.147)

This criterium is of course more restricting than the criterium based upon squhn
k . For z-layer

models it is clearly too restrictive, because top layers may vanish in a z-layer computation,
which is what the criterion tries to prohibit. Both for z-layer and sigma models we observe
that the less restrictive scheme often gives stable results as well, even in combination with
explicit vertical advection. If one prefers the more restrictive scheme in a z-layer simula-
tion, then the option AutoTimestep=8 has to be selected. This scheme is identical to
AutoTimestep=5 except that the top layer is neglected in the evaluation. We prefer the
explicit vertical advection scheme over the implicit vertical advection scheme, because it is
less prone to checkerboarding.

6.3.3.1 Time step restrictions and baroclinic effects in a 3D model

Because we have an explicit treatment of baroclinic terms, there is even more reason to apply
the time step criterion involving the vertical fluxes AutoTimestep=5, in computations in-
cluding salinity transport. If we do so, we never encountered instabilities so far. However, even
in z-layers models with sigma on top, we find that the resulting time step is about four times
smaller than is allowed for accuracy or required for stability. Hence, in practice, we never ap-
ply AutoTimestep=5 simply because it is too expensive. We apply AutoTimestep=3,
in combination with a user specified maximum allowable time step, Dtmax. This time step
is based upon accuracy considerations rather than stability considerations. It would be nice
if we had a criterion that results in a time step larger than the one required for guaranteed
stability but sufficiently small for accuracy. For now, we live with non-guaranteed stability of
AutoTimestep=3 in combination with Dtmax, that is based upon accuracy considerations
and at the same time is beneficial for stability.

6.4 Boundary Conditions

We can identify three types of boundary conditions in D-Flow FM. These are:

1 Boundary conditions that complement the governing equations, Equation (6.6) and Equa-
tion (6.7).

2 Supplementary boundary conditions that impose additional constraints at the boundaries.
3 Boundary conditions for constituents, such as salinity.
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We will not discuss the last category. The following boundary conditions in the first category
may be imposed:

0 default: full-slip,
1 "waterlevel",
2 "Neumann",
3 "velocity",
4 "discharge",
5 "Riemann",
6 "outflow"
7 "Qh",

where, except for the default full-slip condition, we have adopted the terminology and num-
bering of D-Flow FM. Additionally, the following boundary conditions in the second category
may be imposed:

8 "tangentialvelocity",
9 "ucxucyadvectionvelocity",

10 "normalvelocity",

were again we have used D-Flow FM terminology, but extended the numbering for our con-
venience. We will use the numbering for the identification of the (parts of) the boundary, at
which these conditions are implied. i.e. Γ1 is the part of the boundary with water level bound-
ary conditions, et cetera. Since the boundary conditions 8 to 10 are supplemental, they may
be combined with conditions 1 to 9.

Disregarding the effects of atmospheric pressure and time relaxation (discussed later), the
boundary conditions may be summarized as:

u • n = 0, x ∈ Γ0, default, (6.148)

ζ = ζb, x ∈ Γ1, "waterlevel", (6.149)

∂ζ

∂n
= sb, x ∈ Γ2, "Neumann", (6.150)

u • n = ub, x ∈ Γ3, "velocity", (6.151)∫
Γ4

hu • n dΓ = Qb, x ∈ Γ4, "discharge", (6.152)

ζ +

√
h

g
u • n = 2ζb − ζ0, x ∈ Γ5, "Riemann", (6.153)

∂ζ

∂n
= 0,u • n > 0, x ∈ Γ6, "outflow", (6.154)

∂ζ

∂t
−
√

gh

(
∂ζ

∂n
+ sb

)
= 0,u • n ≤ 0, x ∈ Γ6, "outflow", (6.155)

ζ = hb

∫
Γ7

hu • n dΓ

 , x ∈ Γ7, "Qh", (6.156)
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djxL(j)

xb(j)
dj

xR(j)

Figure 6.11: Virtual boundary "cells" near the shaded boundary; xLj is the virtual "cell"
center near boundary face j; xR(j) is the inner-cell center; bj is the point on
face j that is nearest to the inner-cell center

and

u • t = vb, x ∈ Γ8, "tangentialvelocity", (6.157)

u = ub, x ∈ Γ9, "ucxucyadvectionvelocity", (6.158)

u • n = ub, x ∈ Γ10, "normalvelocity", (6.159)

where ζb, sb, ub, vb, ub, Qb and hb are user prescribed at the boundary where appropriate,
n is the inward-positive normal vector, t is a unit tangential vector and ζ0 is the initial water
level.

Remark 6.4.1. The condition u • n > 0 in Equation (6.154) is satisfied at inflow only.

Remark 6.4.2. At the "Qh" boundary ζ is a function hb of Q and Q− ζ condition is imposed.

6.4.1 Virtual boundary "cells": izbndpos

We firstly introduce some notation. B0 is the set of faces that are at the full-slip boundary, B1

is the set of faces at the "waterlevel" boundary Γ1 and so on.

There is no administration in D-Flow FM for B0. The default boundary conditions are satisfied
by effectively setting the face-normal velocity component to zero, i.e.

uj = 0, j ∈ B0. (6.160)

The non-default boundary conditions are imposed by using virtual boundary cells, see Fig-
ure 6.11. Note that the term "cell" is ambiguous as it is only defined by means of its cir-
cumcenter. For boundary conditions of the first category (1 to 7), we discriminate between
boundaries where, roughly speaking, the water level is imposed (1, 2, 5 and 7) and where
velocities are imposed (6 and 7), i.e.

Γζ = Γ1 ∪ Γ2 ∪ Γ5 ∪ Γ6 ∪ Γ7, (6.161)

Γu = Γ3 ∪ Γ4, (6.162)

Γ = Γζ ∪ Γu (6.163)
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and similarly for the sets Bζ , Bu and B. The second category of boundaries are supplemental
and are a subset of the first. Hence, for the definition of the virtual boundary "cell" centers we
only need to consider water level and velocity boundaries, Γζ and Γu respectively.

Let dj measure the shortest distance from the cell circumcenter to the boundary face, see Fig-
ure 6.11, and let bj be the corresponding nearest point on the boundary face. Then the virtual
"cell" centers are computed with Algorithm (27). Note that xn are mesh node coordinates and
remember that the face normal nj is inward positive.

Algorithm 27 addexternalboundarypoints: compute centers of virtual boundary "cells"

xL(j) =


bj −max(dj,

1
2

√
bAR(j))nj, j ∈ Bζ ∧ izbndpos = 0

1
2
(xn l(j) + xnr(j)), j ∈ Bζ ∧ izbndpos = 1,

bj −max(dj,
1
2

√
bAR(j))nj, j ∈ Bu.

(6.164)

Remark 6.4.3. Option izbndpos = 2 is not documented here.

Algorithm (27) shows that the virtual cell centers are on the boundary for izbndpos=1 and
at a distance dj (or 1

2

√
bAR(j)) from the boundary otherwise.

Besides a center, the virtual boundary "cells" also have a bed area bA and bed level bl defined
as

bAL(j) = bAL(j),

blL(j) = blR(j).

}
j ∈ B. (6.165)

6.4.2 Discretization of the boundary conditions

The boundary conditions are accounted for by modification of the discretization near the
boundaries. Assume that we are at time-level n and advance to time-level n + 1, then the
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discretization of Eqns. (6.148) to (6.156) is:

un+1
j = 0, j ∈ B0, default, (6.166)

ζn+1
L(j) = ζb(bj, t̂

n+1), j ∈ B1, "waterlevel", (6.167)

ζn+1
R(j) − ζn+1

L(j)

∆xj

= sb(bj, t̂
n+1), j ∈ B2, "Neumann", (6.168)

un+1
j = ub(bj, t̂

n+1), j ∈ B3, "velocity", (6.169)

un+1
j =

Qb(t̂
n+1)(hu

n
j )

2/3∑
l∈B4

Au
n
l (hu

n
l )

2/3
, j ∈ B4 "discharge", (6.170)

ζn+1
L(j) = 2ζb(bj, t̂

n+1)− ζ0R(j) + . . .

. . .−

√
1
2
(hζ

n
L(j) + hζ

n
R(j))

g
un
j , j ∈ B5, "Riemann", (6.171)

ζn+1
L(j) = ζnR(j), u

n
j > 0 j ∈ B6, "outflow", (6.172)

ζn+1
L(j) − ζnL(j)

∆tn
=

√
g
1

2
(hζ

n
L(j) + hζ

n
R(j)) . . .

. . . (
ζnR(j) − ζnL(j)

∆xj

+ sb(bj, t̂
n+1)), uj ≤ 0, j ∈ B6, "outflow", (6.173)

ζn+1
L(j) = hb(

∑
l∈B7

qnl ), j ∈ B7, "Qh", (6.174)

where hζk is the cell-centered water depth, i.e.

hζk = ζk − blk, (6.175)

ζb(x, t) is a user-prescribed time-varying water level at boundary Γ1, similar for normal slope
sb(x, t) and normal velocity ub(bj, t̂

n+1), and Qb(t) is a user-prescribed time-varying dis-
charge at boundary Γ4. Furthermore, t̂n+1 is an estimate of the next time level tn+1.

We do not mention the threshold on hu
n
j for the discharge boundaries under outflow conditions

Qb(t) < 0, nor a threshold on 1
2
(hζ

n
L(j) + hζ

n
R(j)) at the Neumann boundaries.

The second category boundary conditions only affect the reconstruction of the cell-centered
full velocity vectors uc near the boundary:

uc
n
L(j) = un

jnj + vb(bj, t̂
n+1)tj, j ∈ B8, "tangentialvelocity", (6.176)

uc
n
L(j) = ub(bj, t̂

n+1), j ∈ B9, "ucxucyadvectionvelocity", (6.177)

uc
n
L(j) = ub(bj, t̂

n+1)nj, j ∈ B10,"normalvelocity", (6.178)

where vb(x, t), ub(x, t) and ub(x, t) are user-prescribed and time-varying at the boundary.

Remark 6.4.4. During the time-step from tn to tn+1, the cell center reconstructed is based
on un

j (fully explicit). The boundary conditions are at the new time-level, on the other hand.
This seems inconsistent.

Note that the "ucxucyadvectionvelocity" and "normalvelocity" conditions allow a supercritical
inflow at the boundary. All three boundary conditions types are only relevant for inflow condi-
tions.
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6.4.2.1 Discharge boundaries: jbasqbnddownwindhs, qbndhutrs

For simplicity we only consider one discharge boundary and mention that there may be more
than one. The face-based water depth in the evaluation of the flow area can optionally
be set to a downwind approximation (for an inflowing discharge boundary) with the option
jbasqbnddownwindhs, i.e.

huj = ζR(j)− blR(j), j ∈ B4 ∧ jbasqbnddownwindhs = 1, "discharge". (6.179)

Compare with Algorithm (4) where the face-based water depths huj are computed. They are
overwritten in Algorithm (28) at the discharge boundary.

Algorithm 28 setau | discharge boundaries: adjustment to Algorithm (5) to overwrite water
depths at the discharge boundaries

if jbasqbnddownwindhs=0 then
B∗ = {l ∈ B4|hul > 0}

huj = max(0,

∑
l∈B∗

ζR(l)wul∑
l∈B∗

wul
)−min(bl1j, bl2j), j ∈ B∗

end if
if jbasqbnddownwindhs=1 then
huj = ζR(j) − blR(j), j ∈ B4

compute Auj , j ∈ B5 as in Algorithm (5)
end if
B̂ = {l ∈ B4|hul ≥ qbndhutrs ∨Qb ≥ 0}
huj = 0, j ∈ B4 \ B̂
Auj = 0, j ∈ B4 \ B̂
zuj =

Qb(huj)
2/3∑

l∈B̂
(hul)2/3Aul

, j ∈ B4

Remark 6.4.5. Since for some cases the water depth at the discharge boundaries are mod-
ified after the volumes Vk and cross-sectional wetted areas Auj are computed, the water
depth now seems inconsistent with the aforementioned quantities.

6.4.2.2 Riemann boundaries

At a Riemann boundary we do not allow any outgoing perturbation with respect to some
reference boundary state to reflect back from the boundary. This is achieved by prescribing
the incoming Riemann invariant. Note that we disregard directional effects. Using the D-
Flow FM convention of a positive inward normal at the boundary, this can be put as

u • n+ 2
√
gh = ub + 2

√
ghb (6.180)

where we take boundary values (ζb, ub) as the reference boundary state. By using hb =
h+ ζb − ζ , the term

√
ghb can be linearized in ζ around ζ = ζb as√

ghb =
√

g(h+ ζb − ζ) ≈
√

gh+
1

2

√
g

h
(ζb − ζ). (6.181)

Substitution yields√
g

h
ζ + u • n = ub +

√
g

h
ζb. (6.182)

Instead of prescribing a combination of velocity and water level, we prefer to prescribe the
water level at the boundary, i.e. ζb. For the necessary, but unknown velocity ub we use linear
theory with respect to the initial state (ζ, u) = (ζ0, u0) = (ζ0, 0).
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Remark 6.4.6. We assume that the initial velocity field is zero in any case.

Note: Assumed is that there is no residual flow in the model.

By assuming small perturbations with respect to the initial conditions and considering conser-
vation of mass at the boundary, we have:

ubh =
√
gh(ζb − ζ0), (6.183)

or

ub =

√
g

h
(ζb − ζ0). (6.184)

Substitution of this expression in Equation (6.182) yields√
g

h
ζ + u • n =

√
g

h
(2ζb − ζ0). (6.185)

Note that a similar approach is taken in ?

The discretization in D-Flow FM is then as shown in Equation (6.171):

ζn+1
L(j) = 2ζb(bj, t̂

n+1)− ζ0R(j) −

√
1
2
(hζ

n
L(j) + hζ

n
R(j))

g
un
j , j ∈ B5, "Riemann".

6.4.2.3 Qh-boundaries

At Qh-boundaries the discharge qnj is used, which is according to Algorithm (23)

qnj = Au
n−1
j

(
θju

n
j + (1− θj)u

n−1
j

)
. (6.186)

The function ζ = f(Q) at the boundary is user-provided by means of a table. Without any
further action this kind of boundary condition is quite unstable. That is because the discharge
at the current time level is used for the water level boundary at the new time level. Therefore
an addition to Qh-boundaries is made.

ζn+1
L(j) = f(Qn

bnd), j ∈ B7,"Qh", (6.187)

ζn+1
R(j) = ζn+1

L(j) + f ′(Qn
bnd)(Q

n+1
bnd −Qn

bnd), j ∈ B7,"Qh", (6.188)

with:

Qn
bnd =

∑
j∈B7

qnj (6.189)

As a result the first inner cell from the virtual boundary cell the boundary gets the first order
estimation of the boundary water level.

Rewrite Equation (6.188):

Qn+1
bnd = − 1

f ′(Qn
bnd)

(
ζn+1

L(j) − ζn+1
R(j)

)
+Qn

bnd, j ∈ B7,"Qh", (6.190)

Multiply this equation with qn/Qn and use the estimation: qn+1
j =

Qn+1qnj
Qn

qn+1
j = −

qnj
f ′(Qn

bnd) ·Qn
bnd

(
ζn+1

L(j) − ζn+1
R(j)

)
+ qnj , j ∈ B7,"Qh", (6.191)
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6.4.3 Imposing the discrete boundary conditions: jacstbnd

During a time-step from tn to tn+1, the discrete boundary conditions, i.e. Equation (6.167)
to Equation (6.188) and Equation (6.191) to Equation (6.178), are imposed in the following
manner:

⋄ the reconstruction of the full velocity vectors uc
n
j is modified with Algorithm (29) to account

for the boundary conditions at the new time level t̂n+1,
⋄ the water level boundary conditions at the new time level t̂n+1 are applied to the water

level at the old time level tn with Algorithm (30),
⋄ the velocity boundary conditions are imposed on un+1

j , j ∈ Bu in Algorithm (32),
⋄ the system of equations, referred to as the "water level equations", to obtain ζn+1 is

adjusted in Algorithm (31) near the boundaries,
⋄ having computed the water levels ζn+1 from the "water level equation" with Algorithm (25),

the water levels in the virtual boundary "cells" ζn+1
Lj , j ∈ Bζ are computed with Algo-

rithm (30),
⋄ the velocities at the new time level un+1

j are computed with Algorithm (23) which requires
no modifications since fu and ru were properly adjusted in Algorithm (32).

Remark 6.4.7. The boundary conditions at the new time level t̂n+1 are applied to the cell-
center reconstruction of the full velocity vectors un

c at the old time level tn.
Remark 6.4.8. It is unclear why boundary conditions need to be applied again to the water
level at the old time level tn at the beginning of the time step. They where applied at the end of
the previous time step. Furthermore, conditions from the new time level t̂n+1 are now applied
to the water level at the previous time level tn.
Remark 6.4.9. It is unclear why boundary conditions need to be applied to the water level
at the new time level t̂n+1 right after solving the "water level equation" with Algorithm (30),
since the virtual boundary "cells" are included in the solution vector s = (ζ1, ζ2, . . . )

T and
the discrete system of Equation (6.131) is augmented with the discrete boundary conditions
of Equation (6.149) to Equation (6.156) in Algorithm (31).

Algorithm 29 setucxucyucxuucyu | boundary conditions: adjustment to Algorithm (8) to sat-
isfy the boundary conditions

uc
n
L(j) =



uc
n
R(j), j ∈ B2 ∨ (j ∈ B ∧ jacstbnd = 1)

(uc
n
R(j)

• nj)nj, j ∈ B \ B2 ∧ jacstbnd = 0

un
jnj + vb(bj, t̂

n+1)tj, j ∈ B8

ub(bj, t̂
n+1) j ∈ B9

ub(bj, t̂
n+1)nj, j ∈ B10

Remark 6.4.10. The discretization of the "outflowboundary" condition, Γ6, in Algorithm (30)
is different from the one in Algorithm (31) and seems incomplete. The condition for uj ≤ 0 is
missing.
Remark 6.4.11. The "Qh" boundary condition is ineffective in Algorithm (30), since it is miss-
ing from Equation (6.192) and Equation (6.193).

The water level boundary conditions are inserted into the system of equations as follows.
Firstly, Equation (6.167) to Equation (6.188) show that for some zb the boundary conditions
can be put as

ζn+1
L(j) = zb, j ∈ Bζ \ B2, (6.194)

ζn+1
R(j) − ζn+1

L(j)

∆xj

= sb(b, t̂
n+1), j ∈ B2. (6.195)
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Algorithm 30 sets01zbnd: apply boundary conditions to water levels ζn or ζn+1

zb =



(1− αsmo) ζ
0
j + αsmoζb(bj, t̂

n+1), j ∈ B1

ζn+1
j , j ∈ B2

2ζb(bj, t̂
n+1)−

√
max( 1

2
(hζ

n
L(j)+hζ

n
R(j)),εhs)

g
un
j , j ∈ B5

(1− αsmo)ζ
0
L(j) + αsmo hb(

∑
l∈B7

qnl ), j ∈ B7

zb = max(zb− patmL(j)−pav

ρmean g
, blL(j) + δ), j ∈ Bζ \ B6

δ = 10−3

if apply to ζn then

ζnL(j) =

{
zb, j ∈ B1 ∪ B2 ∪ B5

max(ζnR(j), blR(j)), un
j > 0, j ∈ B6

(6.192)

else {apply to ζn+1}

ζn+1
L(j) =

{
zb, j ∈ B1 ∪ B2 ∪ B5

max(ζnR(j), blR(j)), un
j > 0, j ∈ B6

(6.193)

end if

The rows in the system that are affected by these boundary conditions are the rows that
correspond to the virtual boundary "cell" L(j) and the neighboring internal cell R(j). The
latter may come as a surprise, but is due to our constraint that the system should remain
symmetric. The general form of the system for these rows is obtained by substituting k = L(j)
and k = R(j), j ∈ Bζ in Equation (6.131) respectively, and using O(L(j), j) = R(j) and
O(R(j), j) = L(j), i.e.

Br
n+1(p)
L(j) ζ

n+1(p+1)
L(j) +Cr

n
j ζ

n+1(p+1)
R(j) = dr

n+1(p)
L(j) ,

Br
n+1(p)
R(j) ζ

n+1(p+1)
R(j) +

∑
l∈J (R(l))\j

Cr
n
l ζ

n+1(p+1)
O(R(j),l) +Cr

n
j ζ

n+1(p+1)
L(j) = dr

n+1(p)
R(j) ,

 j ∈ Bζ .

Combining these expressions yields for the non-Neumann boundary conditions

ζ
n+1(p+1)
L(j) = zb,

Br
n+1(p)
R(j) ζ

n+1(p+1)
R(j) +

∑
l∈J (R(l))\j

Cr
n
l ζ

n+1(p+1)
O(R(j),l) = dr

n+1(p)
R(j) − Cr

n
j zb,

 j ∈ Bζ\B2

and for the Neumann boundary condition

−Cr
n
j ζ

n+1(p+1)
L(j) +Cr

n
j ζ

n+1(p+1)
R(j) =

−Cr
n
j∆xjsb(bj, t̂

n+1),

Br
n+1(p)
R(j) ζ

n+1(p+1)
R(j) +

∑
l∈J (R(l))\j

Cr
n
l ζ

n+1(p+1)
O(R(j),l) +Cr

n
j ζ

n+1(p+1)
L(j) =,

dr
n+1(p)
R(j) ,


j ∈ B2.

The consequences for the matrix elements are shown in Algorithm (31).

The velocity boundary conditions appear in the system in the following manner. The condition
for the face-normal velocity components can be expressed as

un+1
j = zuj, j ∈ Bu = B3 ∪ B4, (6.196)
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Algorithm 31 s1nod | boundary conditions: adjustments to Algorithm (20) to satisfy the
boundary conditions in the water level equation
Br

n+1(p)
k ζ

n+1(p+1)
k +

∑
j∈J (k)

Cr
n
j ζ

n+1(p+1)
O(k,j) = dr

n+1(p)
k , Equation (6.131)

Br
n+1(p)
L(j) = 1, j ∈ Bζ

zb =



(1− αsmo) ζ
0
j + αsmoζb(bj, t̂

n+1), j ∈ B1

−sb(bj, t̂
n+1)∆xjCr

n
j , j ∈ B2

2ζb(bj, t̂
n+1)−

√
max( 1

2
(hζ

n
L(j)+hζ

n
R(j)),εhs)

g
un
j , j ∈ B5

ζnR(j), u
n
j > 0, j ∈ B6

ζnL(j) +∆tn
√

g 1
2
(hζ

n
L(j) + hζ

n
R(j))(ζ

n
R(j) − ζnL(j) + sb(bj, t̂

n+1)), uj ≤ 0, j ∈ B6

(1− αsmo)ζ
0
L(j) + αsmo hb(

∑
l∈B7

qnl ), j ∈ B7

zb = max(zb− patmL(j)−pav

ρmean g
, blL(j) + 10−3), j ∈ Bζ

dr
n+1(p)
R(j) = dr

n+1(p)
R(j) − Cr

n
j zb,

Br
n+1(p)
L(j) = 1,

Cr
n
j = 0,

dr
n+1(p)
L(j) = zb,

 j ∈ Bζ \ B2

Br
n+1(p)
L(j) = −Cr

n
j ,

dr
n+1(p)
L(j) = −Cr

n
j∆xjsb(bj, t̂

n+1),

}
j ∈ B2

Cr
n
j = −Br

n+1(p)
R(j) ,

Br
n+1(p)
L(j) = −Cr

n
j ,

dr
n+1(p)
L(j) = 0,

Br
n+1(p)
R(j) = Br

n+1(p)
R(j) − Cr

n
j ,

 j ∈ Bu
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where according to Equation (6.169)

zuj = ub(bj, t̂
n+1), j ∈ B3 (6.197)

and zuj is computed with Algorithm (28) for the discharge boundaries j ∈ B4. Since the
velocity at the next time level with Equation (6.122) in Algorithm (16)

un+1
j = −fu

n
j (ζ

n+1
R(j) − ζn+1

L(j) ) + ru
n
j ,

the adjustments to Algorithm (16) are obvious and presented in Algorithm (32). Note that the
velocity boundary conditions are relaxed with a parameter αsmo from the initial conditions,
assumed zero. This will be explained in the next section.

Algorithm 32 furu | boundary conditions: adjustments to Algorithm (16) to satisfy the bound-
ary conditions of the form un+1

j = zuj, j ∈ Bu in un+1
j = −fu

n
j (ζ

n+1
R(j) − ζn+1

L(j) ) + ru
n
j

fu
n
j = 0,

ru
n
j = αsmozuj,

}
j ∈ Bu

Returning to the system of water level equations, the consequence of the velocity boundary
conditions for the matrix element Cr

n
j can be seen in Algorithm (17), i.e.

Cr
n
j = 0, j ∈ Bu. (6.198)

However, we want to apply a homogeneous Neumann condition to the water level at the
velocity boundary:

ζn+1
R(j) − ζn+1

L(j) = 0 ∈ Bu. (6.199)

This can for arbitrary non-zero Cr
n
j be formulated as

−Cr
n
j ζ

n+1(p+1)
L(j) +Cr

n
j ζ

n+1(p+1)
R(j) =

0,

(Br
n+1(p)
R(j) − Cr

n
j ) ζ

n+1(p+1)
R(j) +

∑
l∈J (R(l))\j

Cr
n
l ζ

n+1(p+1)
O(R(j),l) +Cr

n
j ζ

n+1(p+1)
L(j) =,

dr
n+1(p)
R(j) ,


j ∈ Bu.

To obtain a sensible order of magnitude, we set, as shown in Algorithm (31),

Cr
n
j = −Br

n+1(p)
R(j) , j ∈ Bu. (6.200)

6.4.4 Relaxation of the boundary conditions: Tlfsmo

In Algorithms (30), (32) and (31) the boundary conditions are relaxed from the initial values
with a parameter αsmo that turns the discrete boundary conditions into

ζn+1
L(j) = (1− αsmo)ζ

0
L(j) + αsmo ζb(bj, t̂

n+1), j ∈ B1,"waterlevel", (6.201)

un+1
j = αsmo ub(bj, t̂

n+1), j ∈ B3,"velocity", (6.202)

un+1
j = αsmo

Qb(t̂
n+1)(hu

n
j )

2/3∑
l∈B4

Au
n
l (hu

n
l )

2/3
, j ∈ B4 "discharge", (6.203)

ζn+1
L(j) = (1− αsmo)ζ

0
L(j) + αsmo hb(

∑
l∈B7

qnl ), j ∈ B7,"Qh" (6.204)
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and similar for the continuous formulation. The parameter αsmo is computed from the user-
prescribed parameter Tsmo (Tlfsmo) as

αsmo = min

(
t̂n+1 − t0

Tsmo

, 1

)
. (6.205)

Remark 6.4.12. The second category velocity boundary conditions are not being relaxed in
the same way as the first category, but maybe they should.

Remark 6.4.13. A zero initial velocity field is assumed in the relaxation of the boundary con-
ditions.

6.4.5 Atmospheric pressure: PavBnd, rhomean

Local changes in atmospheric pressure at the boundaries, except for the outflow boundary,
are accounted for by correcting the water level with

−
patmL(j) − pav

ρmean g
(6.206)

as shown in Algorithms (30) and (31), where patmk, pav (called PavBnd in D-Flow FM) and
ρmean (called rhomean in D-Flow FM) are the user-supplied atmospheric pressure in cell k,
average pressure and average density, respectively.

6.4.6 Adjustments of numerical parameters at and near the boundary

At and near the boundary, the advection scheme and time-integration method are adjusted
with Algorithm (33). The time-integration parameter θj is set to 1 and the advection scheme
is set to ’6’ at and near the water level boundary. See Algorithm (6) for an overview of the
advection schemes. These settings are not only applied to the water level boundary faces,
but also to all faces of internal cells that are adjacent to the water level boundary.

For the velocity boundary conditions, the time integration parameter θj is set to 1 at and near
the boundary. Advection is turned off by setting the advection scheme to −1, but only for the
faces at the boundary that is.

Algorithm 33 flow_initexternalforcings: adjust numerical settings near the boundaries

θl = 1, l ∈ J (R(j))

iadvl = 6, l ∈ J (R(j))

}
j ∈ Bζ

θl = 1, l ∈ J (R(j))

iadvj = −1

}
j ∈ Bu

6.4.7 Viscous fluxes: irov

Momentum diffusion is elaborated in Theorem 6.2.2 and in particular Algorithm (13). It will
be clear that we can not evaluate the viscous stresses tuj at closed boundaries as in Equa-
tion (6.74). Instead, boundary conditions need to be imposed. These are:

tuj =


0, irov=0, free slip,

−u∗
j |u∗

j |sj, irov=1, partial slip,

−νj
Uj

∆yj
sj, irov=2, no slip,

(6.207)
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where u∗
j is the friction velocity, sj = n⊥

j a unit tangential boundary vector whose orientation
we will not discuss and, if R(j) is the boundary cell (note that L(j) does not exist),

∆yj =
1

2

bAR(j)

wuj

. (6.208)

The friction velocity is computed as

u∗
j =

Ujκ

C + d/z0
, (6.209)

with

Uj = ucR(j) • sj, (6.210)

z0 the user specified roughness height, κ the Von Karman contanst, d a distance from the
cell centroid perpendicular to the boundary face and C either 1 or 9.

The boundary cell-based momentum diffusion term then becomes

1

hp
∇ •
(
νhp(∇u+∇uT)

)∣∣
ΩR(j)

≈ 1

Hp
R(j)

dR(j) +

∑
l∈{m∈B0|R(m)=R(j)}

tulwulsl,R(j)

bAR(j)
, j ∈ J0, (6.211)

where dR(j) represents the contribution from the non-boundary faces of boundary cell R(j)
as given by Equation (6.73) for k = R(j).

Remark 6.4.14. Comparing the contribution of the viscous boundary stress with the ex-
pression for the contribution of the internal faces dk in Equation (6.73) reveals that the
istresstype does not apply to the contribution of the boundary stresses. Apparently
p = 0 is applied here. See Remark 6.2.17 in this respect.

6.5 Summing up: the whole computational time step

With the discretization explained in the previous sections, we are now able to sum up the com-
putational time step. It is shown in Algorithms (34), (35) and (36). The data being computed
and updated are shown in Table 6.3.

Algorithm 34 flow_single_timestep: perform a computational time step from tn to tn+1 and
obtain ζn+1

k , un+1
j , qn1

j , qa
n+1
j and Vk

n+1, ∀k and ∀j
flow_initimestep: compute derived data huj

n, Au
n
j , et cetera and perform the predictor

phase of the fractional time step to obtain Aij and Aej , ∀j with Algorithm (35)
step_reduce: compose system of water-level equations, solve the system to obtain ζn+1

k ,
compute volumes and wetted areas V n+1

k , An+1
k , set hu

n
j to zero (old time-level) for dis-

abled faces during solve and perform the corrector phase to obtain un+1
j , qn+1

j and qa
n+1
j

with Algorithm (24)
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Table 6.3: Data during a computational time step from tn to tn+1 with Algorithm (34); the
translation to D-Flow FM nomenclature is shown in the last column

input D-Flow FM

time instant tn time0

water level ζnk s0

face-normal velocity components un
j u0

fluxes qnj , qanj q1, qa

water column volumes V n
k vol1

wet bed areas An
k A1

time step ∆tn−1 dts

during the time step (a selection)

estimate for next time instant t̂n+1 time0+dts

the face based water height hu
n
j hu

wetted cross-sectional areas Au
n
j Au

the water column heights hs
n
k hs

the cell-centered full velocity vectors uc
n
k , uq

n
k ucx, ucy, ucxq, ucyq

node-based full velocity vectors un
n
i ucnx, ucny

momentum equation terms Aej , Aij adve, advi

output

time instant tn+1 time1

water level ζn+1
k s1

face-normal velocity components un+1
j u1

fluxes qn+1
j , qa

n+1
j q1, qa

water column volumes V n+1
k vol1

wet bed areas An+1
k A1

time step ∆tn dts
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Algorithm 35 flow_initimestep: compute derived data and perform the predictor phase of the
fractional time step

hζ
n
k = ζnk − blk, ∀k

t̂n+1 = tn +∆tn

flow_setexternalboundaries: update boundary values at time instant t̂n+1

sethu: compute face-based water heights hu
n
j with Algorithm (4) and Algorithm (43) ex-

plained later
setau: compute the flow area Au

n
j with Algorithms (5) and (28)

setumod: compute cell-based full velocity vectors uc
n
k , uq

n
k , first-order upwind velocity

uL
u
n

j and add Coriolis forces and viscous fluxes to Aej with Algorithm (36)
compute bed friction coefficients
compute time step ∆tn+1

advec: add advection terms to Aij and Aej with Algorithms (6) and (44)
setextforcechkadvec: add external forces to Aij and Aej and make adjustments for small
water depths, Algorithm (39) explained later

Algorithm 36 setumod: compute cell-based full velocity vectors uck, uqk, first-order upwind
velocity uL

u j and add Coriolis forces and viscous fluxes to Aej

setucxucyucxuucyu: reconstruct cell centered velocity vectors uck and uqk, and set first-
order upwind fluxes uL

u j with Algorithms (8) and (29)
compute tangential velocities vj from the cell-centered velocities uqk with Eqn. (6.50)
compute Coriolis forces
setcornervelocities: interpolate nodal velocity vectors un from cell-centered velocity vec-
tors uc with Algorithm (9)
compute viscous momentum fluxes, except at the default boundaries, i.e. j /∈ J0, and add
to Aej with Algorithm (13)
compute viscous momentum fluxes near the default boundaries j ∈ J0 and add to Aej
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6.6 Flooding and drying

The governing equations, Equation (6.6) and Equation (6.7), can only be formulated for posi-
tive water heights, i.e. the "wet" part of the whole domain where h > 0. However, our domain
may also contain areas that are dry. If we let Ω denote the whole domain, then we can define
the wet part Ω̄(t) as

Ω̄(t) = {x ∈ Ω|h(x, t) > 0}. (6.212)

In other words, when we are faced with flooding and drying we are actually attempting to solve
a moving boundary problem, where ∂Ω̄(x, t) is the moving boundary.

In D-Flow FM the governing equations are discretized on a stationary mesh (in two dimen-
sions). Looking at the governing equations, Equation (6.6) and Equation (6.7), we can imme-
diately identify two difficulties in the numerical treatment of the wet/dry boundary:

⋄ the spatial discretization near the moving wet/dry boundary, and
⋄ the temporal discretization at cells that become wet or dry during a time-step.

One may think of two possible approaches to overcome the difficulties with the spatial opera-
tors near the moving boundary: the stencil could be adapted such that it does not extend to
the dry part of the domain, or, alternatively, the spatial operators could be left unmodified and
the flow variables in the dry part could be given values that comply with the (moving) boundary
conditions. We leave it up to the reader to decide which approach is taken in D-Flow FM and
restrict ourselves by describing the measures taken in D-Flow FM to account for the wet/dry
boundary.

6.6.1 Wet cells and faces: epshu

We can distinguish between wet (or dry) cells and wet (or dry) faces, which are the discrete
counterpart of Ω̄ (or Ω \ Ω̄). Dry faces are identified by setting their face-based water height
to zero, i.e. huj = 0. In D-Flow FM this occurs at two occasions during a time-step:

⋄ at the beginning of the time step, and based on the water level ζnk , faces for which hu ≤
εhu are disabled by setting them to zero with Algorithm (37). Note that εhu is a threshold
which is called epshu in D-Flow FM and is user specified,

⋄ during the time step, the water level ζn+1(p)
k may have dropped below the bedlevel. De-

pending on poshcheck , the time-step is repeated with a smaller time step (type 1) or
all faces of the cell are deactivated by setting their hu

n
j to zero, see Algorithm (21), and

the water level equation is solved again.

Algorithm 37 sethu | drying and wetting: adjustment to Algorithm (4) to account for drying
and wetting

compute hu
n
j with Algorithm (4)

disable dry faces by setting hu
n
j = 0 if hu

n
j ≤ εhu

6.6.2 Spatial discretization near the wet/dry boundary

In D-Flow FM, dry faces affect the discretization of:

⋄ the wet bed areas An
k and water-column volumes V n

k ,
⋄ momentum advection: set to zero in Algorithm (6) (not mentioned there),
⋄ bed friction forces: set to zero, and
⋄ viscous fluxes: set to zero for hu

n
j in Algorithm (36).
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The computation of the wet bed areas and water-columns was already presented in Algo-
rithm (22). As can been seen in Algorithm (22), the bed is assumed constant in case of no
non-linear iterations. That is, as far as the water-column volumes and wet bed areas are con-
cerned. See Remark 6.2.4 in that respect. With a constant bed level, no modifications are
necessary for the computation of the wet bed area. The bed is either completely wet, or it
isn’t. In case of non-linear computations, however, the bed is assumed non-constant in a cell.
The expressions for Vk and Ak are then

Vk =

∫
Ωk∩Ω̄

h dΩ (6.213)

and

Ak =

∫
Ωk∩Ω̄

dΩ (6.214)

respectively, where we have used that Ωk ∩ Ω̄ indicates the wet part op the cell. These
integrals are discretized as indicated in Algorithm (38).

Remark 6.6.1. Applying Gauss’s theorem to Equation (6.214) yields

Ak =

∫
∂Ωk∩Ω̄

1

2
(x− xk) • n dl +

∫
Ωk∩∂Ω̄

1

2
(x− xk) • n dl, (6.215)

where we have assumed outward positive normal vectors n. It shows that we do not only
need to integrate along (a part of) the edges of Ωk, but also along the wet/dry boundary in cell
∂Ω̄ ∩ Ωk. Since this term is missing in the expression for Ak, the wet bed area of a partially
wet cell is incorrectly computed.

Algorithm 38 volsur | non-linear iterations: compute water-column volume V
n+1(i+1)
k and

wet bed area A
n+1(i+1)
k

if no non-linear iterations then
use Algorithm (22)

else
compute ∆bj = max(bl1j, bl2j) − min(bl1j, bl2j) and wet cross-sectional area Auj

as in Algorithm (5)
Ak =

∑
j∈{l∈J (k)|sk,l=1}

1
2
∆xjαj min(

huj

∆bj
, 1)wuj+∑

j∈{l∈J (k)|sk,l=−1}

1
2
∆xj(1− αj)min(

huj

∆bj
, 1)wuj

Vk =
∑

j∈{l∈J (k)|sk,l=1}

1
2
∆xjαjAuj+∑

j∈{l∈J (k)|sk,l=−1}

1
2
∆xj(1− αj)Auj

end if
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6.6.3 Spatial discretization of the momentum equation for small water depths: chkadv,
trshcorio

Recall that Eqn. (6.26) summarizes the spatial discretization of the momentum equation:

duj

dt
= − g

∆xj

(
ζR(j) − ζL(j)

)
−Aijuj −Aej −

g |uj |
C2h

uj,

where Aej and Aij represent the contributions of momentum advection, diffusion, Coriolis
forces and external forces not being bed friction. These contribution are computed with Algo-
rithm (6) for advection and Algorithm (36) for diffusion and Coriolis forces, respectively. The
contributions to Aej by external forces not being the bed friction are added by Algorithm (39).
It shows that for small water depths huj the term Aej is limited to zero from a user-specified
threshold hchkadv, called chkadv in D-Flow FM.

Algorithm 39 setextforcechkadvec: add external forces not being the bed friction forces to
Aej and Aij , and limit for vanishing water depths, in the expression:
duj

dt = − g
∆xj

(
ζR(j) − ζL(j)

)
−Aijuj −Aej −

g |uj |
C2h

uj

add external forces to Aej
if huj > 0 then

if hsL(j) <
1
2
hζR(j) ∧ Aej < 0 ∧ hζR(j) < hchkadv then

Aej = min(
hζL(j)

hchkadv
, 1)Aej

else if hζR(j) <
1
2
hζL(j) ∧ Aej > 0 ∧ hζL(j) < hchkadv then

Aej = min(
hζR(j)

hchkadv
, 1)Aej

end if
end if

Remark 6.6.2. It is unclear why the term Aej needs to be limited to zero for vanishing water
depths.

Remark 6.6.3. It is unclear why only the term Aej is limited, and not the other terms. In the
first place Aij , but also the remaining terms in Eqn. (6.26).

Coriolis forces are computed and added to Aej in Algorithm (36). Besides the limitation
described above, an additional limitation is performed. If fcj is the Coriolis normal force
at face j, then it is limited as indicated in Algorithm (40) with a threshold htrshcorio called
trshcorio in D-Flow FM.

Algorithm 40 setumod | limitation of Coriolis forces: adjustment to Algorithm (36) to account
for vanishing water depths

htrshcorio = 1
hminj = min(hζL(j), hζR(j))

limit Coriolis forces fcj to fcj min( hmin

htrshcorio
, 1)

Remark 6.6.4. The Coriolis forces are limited by Algorithm (40) and by Algorithm (39).

6.6.4 Temporal discretization of the momentum equation near the wet/dry boundary

If the face is dry at the beginning of the time step, then it is assumed that during a time-step
from tn to tn+1 no water is fluxed through it. The face-normal velocity un

j is set to zero in such
circumstances.
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Remark 6.6.5. The assumption that during a time step no water is fluxed through a dry face
that is dry at the old time instant imposes a time step limitation.

Remark 6.6.6. Setting the face-normal velocities in the dry area to zero does not seem to
obey a moving wet/dry boundary condition. Hence, the spatial operators and temporal dis-
cretization are not allowed to be applied without modification. However, they are.

Setting hu
n
j = 0 during the time step does not affect the computation of momentum advection

and diffusion et cetera, as the terms Ae and Ae remain untouched. It only affects the water-
column volumes V n+1

k and wet bed areas An+1
k , face-normal velocities un+1

j and fluxes qn+1
j

and qa
n+1
j at the new time instant as can be seen from Algorithm (24), which do not appear

in the discretization of the momentum equation.

Recall that the temporal discretization of the momentum equation is expressed by Eqn. (6.122)
for huj > 0, or

un+1
j = −fu

n
j (ζ

n+1
R(j) − ζn+1

L(j) ) + ru
n
j , hu

n
j > 0.

Extended for the situation when the face becomes wet or dry, it becomes

un+1
j =


0, face is dry at beginning of the time step,

0, face is wet and becomes dry during the time step,

−fu
n
j (ζ

n+1
R(j) − ζn+1

L(j) ) + ru
n
j , face remains wet.

(6.216)

If the face is still wet at the end of the time step from tn to tn+1, but becomes dry at the
beginning of the new time step from tn+1 to tn+2 due to Algorithm (37), then its normal
velocity component is left unmodified, since the velocities are only set at the end of the time
step by Algorithm (23).

Remark 6.6.7. A face that was still wet at the end of the previous time-step, but becomes dry
during the current time-step can have a non-zero normal-velocity at the old time level. It is
being used in the evaluation of advection terms, diffusion terms et cetera at the beginning of
the next time step, although the face is dry. In contrast, faces that were already dry from the
end of the previous time step have zero normal-velocity.

6.7 Fixed Weirs

This section elaborates on the numerical treatment of the fixed weirs. They are commonly
used to model sudden changes in depth (roads, summer dikes) and groynes in numerical
simulations of rivers. In D-Flow FM, a fixed weir is a fixed non-movable construction gener-
ating energy losses due to constriction of the flow. Weirs are discretely represented along
mesh lines. In such a manner, faces can be identified that are located exactly on top of the
weirs, and no computational cells are cut by a weir. A cell is either on one side of a fixed
weir, or on the other side. Provided that the cross-sectional wet areas of the faces Auj have
been properly modified to account for the fixed weir (if present), no modifications have to be
made to the discretization of the continuity equation. The momentum equation, on the other
hand, has to be modified such that we obtain our desired subgrid model. The flow over a fixed
weir can not be modeled in D-Flow FM as is, but is based on an alternative approach which
is called ’subgrid’ modelling, which means that a weir is not ’modelled on the grid’, but that a
parametrization is applied.

Three different subgrid approaches are available to simulate the energy losses by fixed weirs.
First of all, a numerical approach has been implemented. Then, a special discretization of the

Deltares 95 of 207



DRAF
T

D-Flow Flexible Mesh, Technical Reference Manual

advective terms before and after the fixed weir is applied. This option is switched on via key-
word fixedweirscheme=6. This numerical approach is described in detail in section 6.7.1
to section 6.7.4.

Next to the numerical approach, there is an empirical approach to determine the energy
losses by weirs, for which two options are availabe in D-Flow FM, namely the so-called
’Tabellenboek’ and ’Villemonte’ approaches. The Tabellenboek option is switched on via
keyword fixedweirscheme=8, while the Villemonte approach coincides with keyword
fixedweirscheme=9. The two corresponding empirical formulas have been taken from
the Simona software, see the website https://iplo.nl/thema/water/applicaties-modellen/watermanagementmodellen/
simona/. Based on many flume measurements formulas have been derived to fit the measure-
ments as well as possible. This empirical approach is described in section 6.7.5.

The third approach is available on 1D2D links only. Here a simple analytical weir formula is
solved at the location of the fixed weir. Since the analytical discharge and the up- and down-
stream waterlevels have a nonlinear relation, this weir formula is solved by iteration inside the
solve step. The overhead for this iteration is marginal, since this iteration coincides with the
non-linear iteration for solving the 1d mass conservation. This 1D2D fixed weir approach is
described in detail in section 6.7.8.

6.7.1 Adjustments to the geometry: oblique weirs and FixedWeirContraction

Recall that the bed geometry is represented by the face-based bed-levels bl1 and bl2, see
section 6.1.2 and Algorithm (3). The wet cross-sectional area Au is derived from it with
Algorithm (5). In other words, the fixed weirs are properly represented by adjusting bl1 and
bl2. Also appearing in the expression for Au is the face width wu. Weirs that are not aligned
with the mesh, called oblique weirs for shortness, are projected to the (non-aligned) weir, i.e.

wuj = c ∥xr(j) − xl(j)∥ |nj • nwj|, (6.217)

where nwj is a unit vector normal to the part of the fixed weir that is associated with face
j. The cross-sectional wetted area is decreased by the same amount as wu by means of
Algorithm (5).

Remark 6.7.1. Oblique weirs are not fully understood at this moment. We do not attempt to
explain Equation (6.217) further.

In Equation (6.217) c is a user-specified contraction coefficient that accounts for obstacles in
the flow that accompanied with the weir, such as pillars. It is called FixedWeirContraction
in D-Flow FM.

The adjustments of bl1, bl2 and wu are performed with Algorithm (41).

Algorithm 41 setfixedweirs: change geometry bl1, bl2 and wu and advection type for fixed
weirs
bl1j = max(zcj, bl1j)
bl2j = max(zcj, bl2j)
if left and right weir sill heights are prescribed and conveyance type > 0 then

set bl1j and bl2j of adjacent faces, not described further
end if
adjust advection type of adjacent faces with Algorithm (42)
wuj = c ∥xr(j) − xl(j)∥ |nj • nwj|
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6.7.2 Adjustment to momentum advection near, but not on the weir

Due to our subgrid modelling,the flow over a weir is discontinuous. In principle, this has is
consequences for the discretization of all spatial operators near the weir and to this end the
advection type near the weir is also adjusted by Algorithm (41). More precisely, all faces
belonging to cells that are adjacent to weirs, except for the faces that are associated with a
weir themselves, with Algorithm (42) have their advection type set to 4. As can be seen in
Algorithm (6), only inflowing cell-centered velocities are used in the expression for momentum
advection for scheme 4. Doing so, the advection at faces adjacent to and upstream of the
weir are not affected by the cell-centered velocities near the weir.

Remark 6.7.2. Since the flow over a weir is discontinuous due to our subgrid modelling, one
may need to discretize the spatial operators near the weir more rigorously.

Algorithm 42 setfixedweirscheme3onlink: set advection type to 4 of faces near the weir

if face j is associated with a fixed weir then
iadvj = 21
θj = 1
for l ∈ {m ∈ J (L(j)) ∪ J (R(j)) | iadvm ̸= 21} do
iadvl = 4
θl = 1

end for
end if

6.7.3 Adjustments to the momentum advection on the weir: FixedWeirScheme

We assume that a face j is located exactly on top of a fixed weir or not at all. Upstream of a
fixed weir, a contraction zone exists. The cell-centered water level upstream of the face (L(j)
if uj > 0) represents the far-field water level before the contraction zone. The water level at
the cell-centered water level downstream of the face (R(j) if uj > 0) is used as a downwind
approximation of the water level on top of the fixed weir. In other words, the discretization at a
face j represents the flow upstream of the weir at face j. This is the contraction zone, which is
governed by energy conservation. The expansion zone downstream of the weir, is governed
by momentum conservation and is directly resolved in the mesh without, in principle, further
adjustments.

Assume that at face j is on top of a weir and that the flow is from the left L(j) to the right
neighboring cell R(j). We require that:

1 Energy is conserved from cell L(j) to R(j).
2 The downstream water level ζR(j) should have no effect on the fixed weir in supercritical

conditions. In this case the water height on top of the weir reached its minimum value of
2
3
Ej , where Ej is the far-field energy head above crest. Its computation will be discussed

later.

Energy conservation is expressed by means of Bernoulli’s equation, i.e.

1

2
uin

2
j + gζL(j) =

1

2
u2
j + g(zCj + huj), (6.218)

where uinj is a far-field velocity component in face-normal direction nj and zCj is the crest
level. For the water height at the weir huj a downwind approximation is used that obeys our
second requirement:

huj = max(ζR(j) − zCj,
2

3
Ej), (6.219)
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where Ej is the far-field energy head above the crest. It is computed as

Ej = ζL(j) − zCj +
1

2g
uin

2
j . (6.220)

Remark 6.7.3. Equation (6.220) is only valid along streamlines and consequently we may
only consider flows that are perpendicular to the weir (1D flows) or are uniform along both
sides of the weir.

Substitution of Equation (6.219) and Equation (6.220) in Equation (6.218), some rearrange-
ment of terms and division by ∆xj yields

1

2∆xj

(
u2
j − uin

2
j

)
= − g

∆x

(
ζR(j) − ζL(j)

)
− g

∆x
max(0,

2

3
Ej−(ζR(j)−zCj)) (6.221)

This equation if brought into the form that is solved in D-Flow FM by adding the acceleration
term, which only serves to relax to our stationary subgrid expression of Equation (6.221)

duj

dt
+

1

2∆xj

(
u2
j − uin

2
j

)
= − g

∆x

(
ζR(j) − ζL(j)

)
− g

∆x
max(0,

2

3
Ej−(ζR(j)−zCj))

(6.222)

Remark 6.7.4. Although momentum diffusion over the wear is missing in Equation (6.222), it
is actually included in D-Flow FM.

Recall that the spatial discretization is summarized as shown in Equation (6.26):

duj

dt
= − g

∆xj

(
ζR(j) − ζL(j)

)
−Aijuj −Aej −

g∥uj∥
C2h

uj.

For the temporal discretization, see Equation (6.121). The terms for fixed weirs can then be
put as, assuming uj > 0:

Aij =
1

2∆xj

uj, (6.223)

Aej = − 1

2∆xj

uin
2
j +

g

∆x
max(0,

2

3
Ej − (ζR(j) − zCj)). (6.224)

Remark 6.7.5. Although bed friction is not included in Equation (6.221), it is included in D-
Flow FM by means of Equation (6.26). Its actual computation will not be discussed at this
occasion.

The terms of Equation (6.219), and Equation (6.223) and Equation (6.224) are prescribed
partly with Algorithm (43) and partly with Algorithm (44). Note that the latter also adjusts the
cell-centered velocity vectors uc.

In Algorithms (43) and (44) a far-field velocity uin is computed. For FixedWeirScheme 4,
the far-field velocity is projected in weir-normal, instead of face-normal direction. For Fixed-
WeirScheme 5 the kinetic energy is not used in the determination of the far-field energy head.

Remark 6.7.6. Starting from Bernoulli’s equation to derive the weir subgrid model, it seems
inconsistent to project the far-field velocity in weir-normal direction for scheme 4, while using
the face-normal velocity as the weir crest velocity.

Remark 6.7.7. Starting from Bernoulli’s equation to derive the weir subgrid model, it seems
inconsistent not to include the far-field velocity for scheme 5.
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Algorithm 43 sethu | fixed weir: adjustment to Algorithm (4); set hu and part (one of two) to
Ae

if uj > 0 then
compute far-field velocity ûcL(j) with Algorithm (45)

uinj =


ûcL(j) • nwj, fixed weir scheme 4

0 fixed weir scheme 5

ûcL(j) • nj, otherwise

Ej = ζL(j) − zcj +
1
2g
uin

2
j

if ζR(j) < ζL(j) then
huj = max(ζR(j) − zcj,

2
3
Ej)

Aej = − g
∆xj

min(0, ζR(j) − zcj − 2
3
Ej)

end if
else

as above by interchanging L(j) and R(j) and taking reversed orientation into account
end if

Algorithm 44 advec | fixed weir: adjustment to Algorithm (6) for fixed weir; set Ai and add
part (two of two) to Ae; overwrite cell-center velocity vectors uc of adjacent cells

if fixed weir scheme ∈ {3, 4, 5} then
compute and overwrite cell-centered weir-velocities ucL(j) and ucR(j) with Algorithm (46)

end if
if uj > 0 then

compute far-field velocity ûcL(j) with Algorithm (45)

uinj =

{
ûcL(j) • nwj, fixed weir scheme 4

ûcL(j) • nj, otherwise

Aij =
uj

2∆xj

Aej = Aej −
uin

2
j

2∆xj

else
as above by interchanging L(j) and R(j) and taking reversed orientation into account

end if
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The far-field velocity is based on the cell-centered velocity vector in the adjacent, upstream
cell. The cell-centered velocity vectors are reconstructed from the face-normal velocity com-
ponents with Algorithm (8). However, the upstream cell-centered velocity is reconstructed
from a set of face-normal velocity components that includes the weir itself. Since we are
seeking for a far-field velocity, we have to exclude the increased crest velocity uj from the re-
construction. See Remark 6.7.2 in this respect. This is achieved by estimating an unperturbed
velocity ûj as if no weir was present and using that velocity in the reconstruction instead. The
unperturbed velocity is estimated by using continuity, i.e.

ûj =
huj

ĥj

uj, (6.225)

where ĥj is a typical water depth for the upstream cell (L(j) if uj > 0). The reconstruction
of the upstream cell-centered velocity vector is then performed as shown in Algorithm (45).
Note that the faces that are associated with a weir are identified with iadvj = 21, see

Algorithm (42), so Ĵ (k) is the set of faces of cell k without the faces that are associated to a
fixed weir.

Algorithm 45 getucxucynoweirs: reconstruct a cell-centered velocity vector near a fixed wear
without the weir itself

R̂(k) = {j ∈ R(k)|iadvj ̸= 21} (6.226)

ĥk =


1∑

j∈R̂(k)

wuj

∑
j∈R(k)

wujhuj, R̂(k) ̸= ∅

0, otherwise
(6.227)

uck =
1

bAk

(
∑

j∈{l∈R̂(k)|sl,k=1}

αj∆xjwujnjuj +

∑
j∈{l∈R(k)\R̂(k)|sl,k=1}

αj∆xjwujnjuj min(1,
huj

ĥk

) +

∑
j∈{l∈R̂(k)|sl,k=−1}

(1− αj)∆xjwujnjuj +

∑
j∈{l∈R(k)\R̂(k)|sl,k=−1}

(1− αj)∆xjwujnjuj min(1,
huj

ĥk

))(6.228)

For the advection downstream of the wear the cell-centered velocity vectors get the opposite
treatment with Algorithm (46).
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Algorithm 46 getucxucyweironly: reconstruct a cell-centered velocity vector near a fixed wear
with the weir itself

J̄ (k) = {j ∈ J (k)|iadvj = 21} (6.229)

h̄k =


1∑

j∈J̄ (k)

wuj

∑
j∈J̄ (k)

wujhuj, R̄(k) ̸= ∅

0, otherwise
(6.230)

uck =
1

bAk

(
∑

j∈{l∈J̄ (k)|sl,k=1}

αj∆xjwujnjuj +

∑
j∈{l∈J (k)\R̄(k)|sl,k=1}

αj∆xjwujnjuj max(1,
huj

h̄k

) +

∑
j∈{l∈J̄ (k)|sl,k=−1}

(1− αj)∆xjwujnjuj +

∑
j∈{l∈J (k)\R̄(k)|sl,k=−1}

(1− αj)∆xjwujnjuj max(1,
huj

h̄k

))(6.231)

6.7.4 Supercritical discharge

Supercritical conditions are defined by

ζ∗R(j) ≤ zc +
2

3
Ej, (6.232)

where we let superscript ∗ indicate supercritical and stationary conditions. The water height
at the crest is then according to Equation (6.219)

hu
∗
j =

2

3
Ej. (6.233)

and the crest velocity according to Equation (6.221)

u∗
j =

√
2

3
gEj. (6.234)

The face-based discharge under stationary and supercritical conditions is then by definition

q∗j := Au
∗
ju

∗
j = wujhu

∗
ju

∗
j = wuj

2

3
Ej

√
2

3
gEj, (6.235)

where we have used Equation (6.31) and Algorithm (5).

6.7.5 Empirical formulas for subgrid modelling of weirs

The energy loss due to a weir described by the loss of energy height ([m]). The energy loss
in the direction perpendicular to the weir is denoted as ∆E. This energy loss is added as an
opposing force in the momentum equation by adding a term −g∆E/∆x to the right hand
side of the momentum equation, resulting in a jump in the water levels by ∆E at the location
of the weir.
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The computation of the energy loss depends on the flow condition. There is a distinction
between a subcritical flow condition and a supercritical flow condition. Furthermore, there are
two different empirical formulations for the energy loss in use in D-Flow FM:

1 Tabellenboek
Then, the energy loss is computed according to the following principles, see Wijbenga
(1990):

⋄ In critical flow conditions
To match the theoretical critical flow condition on the crest (flow velocity and wave
propagation speed are the same on the crest).

⋄ In subcritical flow conditions
Based on the so-called "Tabellenboek"’ approach, see Vermaas (1987) and the for-
mula according to Carnot. The formulation was fitted to match laboratory measure-
ments with hydraulically smooth weirs and with the ramp factors m1 = m2 both equal
to 4.0: see (Equation (6.244)) for the definitions of m1 and m2.
Whether Carnot’s formula or the Tabellenboek is used depends on the flow velocity
above the weir: if the flow velocity at the weir is less than 0.25 m/s, the energy
loss is calculated according to the Carnot equation for the energy loss in a sudden
expansion. If the flow velocity above the weir is more than 0.50m/s, the energy loss is
determined by interpolation of measured data which are collected in the Tabellenboek.
When the flow velocity is between 0.25 and 0.50 m/s, a weighted average is taken
between the energy loss following Carnot and the measurements.
For velocities at the weir less than 0.25m/s the energy loss is calculated according
to Carnot’s law:

∆E =
1

2g

(
Uweir −

Qweir

ζ2 + d2

)2

(6.236)

with Uweir the flow velocity on the weir and ζ2 the downstream water level and U2 the
downstream flow velocity.

2 Villemonte
The second available formulation is the formulation proposed by Villemonte (1947). The
formula has terms for different aspects of the weir’s geometry and for the vegetation on it,
more than the Tabellenboek-formulation. This formulation involves a number of parame-
ters, for which realistic values need to be found.
The default values produce an energy loss which is very close to the energy loss found by
the Tabellenboek formula. Alternative values for the tuning parameters were calculated by
Sieben (2011).
Depending on the flow condition, the empirical discharge is processed into the model in
one of the following two ways:

2.1 In critical flow, a loss of energy height is prescribed which causes the discharge to
converge to the empirical discharge over a small period of time.

2.2 In subcritical flow, a loss of energy height is prescribed which is the same as the
loss of energy height in a one-dimensional, steady flow with the given discharge.
Under the influence of (wind-)forces or two-dimensional effects, the discharge may
not converge to the empirical value, even though the energy loss will be the same
as in the one-dimensional, steady case.

In section 6.7.6 the Villemonte approach is described in detail.

For each flow link with a fixed weir an energy loss ∆E is computed for each time step, for both
the Villemonte and the Tabellenboek approaches. It is possible to apply a relaxation coeffi-
cient, via keyword FixedweirRelaxationcoef, so that the energy loss is a combination
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of the current time step and the previous time step, according to

∆Enew = (1− α)∆Enew + α∆Eold (6.237)

with α the relaxation parameter specified by the user, which may vary between 0 and 1. The
default value reads 0.6. Increasing this value might result into more stable simulations.

6.7.6 Villemonte model for weirs

The Villemonte model is based on the analysis of a large number of measurements, which
were fitted for a formula which expresses the discharge across the weir as a function of the
energy heights E1 upstream and E2 downstream of the weir:

Q = Q(E1, E2). (6.238)

The energy heights E1 and E2 are given by:

E1 = ζ1 +
U2
1

2g
, E2 = ζ2 +

U2
2

2g
, (6.239)

where the following notations are introduced:

ζ1 upstream water level, measured from weir crest [m]
ζ2 downstream water level, measured from weir crest [m]
g gravitational acceleration [m/s2]
U1 upstream flow velocity component in direction towards the weir [m/s]
U2 downstream flow velocity component in direction from the weir [m/s]

Apart from the energy heights, the discharge in the empirical formula (6.238) depends on the
properties of the weir. The formula proposed by Villemonte is

Q = Cd0 Qc(E1)

√
1−max

(
0,min

(
1,

(
E2

E1

)p))
, (6.240)

where the following notations are introduced:

Q discharge per unit width across the weir [m2/s]
Cd0 resistance coefficient of the weir [−]
Qc(E1) theoretical value for discharge across the weir in case of critical flow [m2/s]
p power coefficient in discharge formula [−]

Determination of Cd0, Qth and p

The determination of Cd0, Qth and p is as described in the following three sections.

Theoretical critical discharge

The theoretical value Qc for the discharge in case of critical flow is given by

Qc =
2

3
E1

√
2g

3
E1. (6.241)

Note: that, even in critical flow conditions, the discharge has the form (6.240), and therefore
differs from the theoretical critical discharge Qc.
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Resistence coefficient of the weir

The resistance coefficient Cd0 depends on the weir’s vegetation in the following way:

Cd0 = (1 + ξ1/3)
−3/2Cd0,ref , (6.242)

where Cd0,ref is the resistance coefficient the weir would have if it had no vegetation, and
where ξ1 is the dimensionless vegetation coefficient, given by

ξ1 = (1− Ar min(hv, h1))Cdrag (6.243)

where the following notations are introduced:

Cdrag user-specified drag coefficient [−]
Ar user-specified vegetation density per linear meter [1/m]
hv user-specified vegetation height [m]
h1 upstream water level measured from the crest [m]

The effects of the weir’s geometry, vegetation and flow conditions on the resistance coefficient
Cd0,ref is modeled in the following way:

Cd0,ref = c1

(
w

(
1− 1

4
e−m1/2

)
+ (1− w)

(
4

5
+

13

20
e−m2/10

))
, (6.244)

where the following notations were introduced:

c1 user-specified calibration coefficient [−], default 1.0
Note: the Tabellenboek measurements correspond to the default value c1 =
1.0.

m1 user-specified ramp of the upwind slope toward the weir
ratio of ramp length and height, [−], default 4.0

m2 user-specified ramp of the downwind slope from the weir
ratio of ramp length and height [−], default 4.0

w interpolation weight [−]

The interpolation weight w is given by

w = e−
1
2
E1/Lcrest , (6.245)

where Lcrest is the length of the weir’s crest [m] in the direction across the weir.

Power coefficient p

The effect of the vegetation on the power-coefficient p is modeled in the following way:

p =
(1 + ξ1/3)

3

1 + 2 ξ1
pref , (6.246)

where pref is the power coefficient found in absence of vegetation:

pref =
27

4C2
d0

((
1 +

d1
E1

(
1− e−m2/c2

))−2

−
(
1 +

d1
E1

)−2
)−1

. (6.247)

with d1 the downwind ground height. The user-specified calibration coefficient c2 has a default
value c2 = 10. This is an adequate value for hydraulically smooth weirs. For hydraulically
rough weirs, the value could be set in the order of 30 to 50.
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Figure 6.12: Examples of grid snapping for fixed weirs and thin dams.

6.7.7 Grid snapping of fixed weirs and thin dams

All geographical features of a model that are described by x-, and y-coordinates, like fixed
weirs, thin dams and cross-sections, have to be interpolated to the computational grid when
running a model. The computational core of D-Flow FM automatically assigns these features
to the corresponding net links of the grid. This is called grid snapping. In this section is
explained how the grid snapping is implemented in the computational core of D-Flow FM.
This can be checked with the graphical user interface via the grid snapping feature.

In Figure 6.12 eight examples are shown how grid snapping of fixed weirs and thin dams
has been implemented. The upper four examples are for thin dams (in red), while the lower
four examples involve fixed weirs (in blue). In all eight examples one computational cell is
shown with the water level point at the centre and four flow links that are connected to this
water level point. If a thin dam or fixed weir intersects with a flow link, then this object will
be snapped to the corresponding net link. In the left top example there is no intersection and
thus no grid snapping to a net link. In the second example, there is one intersection with one
flow link, in the third example four intersections and in the fourth example two intersections.
This corresponds to the number of net links to which grid snapping have been applied. In the
lower four examples of Figure 6.12 grid snapping of fixed weirs is explained. The algorithm for
determining whether or not a fixed weir is snapped on a net link is the same as for thin dams
and is explained above. The extra aspects for fixed weirs are its width and its crest height.
The width of a fixed weir is illustrated in Figure 6.12, while the computation fo the crest height
is illustrated in Figure 6.13. The following algorithm is applied for the computation of the crest
height of a fixed weir:

⋄ the crest level is the weighted average of the crest heights at the ends of the polyline of a
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Figure 6.13: Examples of computation of crest heights.

fixed weir,
⋄ if multiple fixed weirs intersect a flow link, then the maximum crest level of the interpolated

values is taken,
⋄ if this maximum crest level is below the model depth, then this maximum crest level is set

at the model depth,
⋄ if multiple fixed weirs intersect a flow link, then the lowest toe level (in Dutch "teenhoogte")

is taken. This is the case for both the left and the right side. Unlike the crest level, a
toe level below the model depth is allowed. Noted that the ground height is the distance
between the crest level and the toe level. The above is only relevant for toe levels of which
the ground height is larger than zero. In case of a zero ground height, the corresponding
toe level is neglected in the computation of the ground height.

Next, the input values of this fixed weir with the maximum crest height are used for the other
quantities (ground height left, ground height right, talud left, talud right, crest length, vegetation
coefficient).

The width (wuj
) of a fixed weir is determined by the corner (α) between the fixed weir and the

net link j and is computed according to

wuj
= cos(α) ||Edge||j, (6.248)

wuj
is width of the weir at uj ,

||Edge||j is the original length of cell edge j (i.e., the original width of flow link j′), and
α is the angle between the fixed weir polyline and cell edge j.

If multiple fixed weirs intersect a flow link, then the maximum of the interpolated values is taken
for the width. For some of the fixed weir input quantities upper and lower limits are applied,
because realistic input values are required for an accurate computation of the energy losses
of fixed weirs. Thus, lower limits or upper limits are applied for the following fixed weir input
quantities: maximum crest levels of 10000 [m], minimum slopes of 0.000001 [-], maximum
slopes of 1000 [-], minimum ground heights of 0.0 [m] and maximum ground heights of 500
[m]. If one of these values isn’t between the lower and upper bound, then an error is written
to the diagnostic file and the simulation will stop.

The upper and lower limits mentioned above are taken from the D-Flow Flexible Mesh User
Manual. However, in the D-Flow FM code currently less strict lower and upper limits have
been coded than mentioned in the documentation. This is due to the fact that the Dutch
models developed for the Dutch government (Rijkswaterstaat) sometimes erroneous input
values are generated like negative ground heights. The fixed weir input of these models is
often generated automatically via Baseline and sometimes contains more than one million
lines of input, because of the ten thousands of fixed weirs polylines (dykes, groynes, jumps
in bed levels, ..) that are part of a model schematization. This cannot be checked manually
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anymore. In order to run with model, the lower and upper limits in the code have been made
less strict. In the code we therefore apply a minimum slopes of -0.000001 [-] in order to allow
slopes of zero. Also a minimum ground height of -500.0 [m] is applied. A request has been
made to Rijkswaterstaat to improve Baseline on issues like this. However, as long as this
hasn’t been improved in Baseline, these less strict lower and upper limits will be applied.

6.7.8 1D2D lateral fixed weirs

6.7.8.1 Introduction

A D-Flow FM model domain can consist of both 1D and 2D parts. The flow is modeled as
one-dimensional in the branches of the network(s) of channels and rivers. The flow across
flood plains and in larger waterbodies can be modeled as two-dimensional. A lateral 1D-2D
coupling is applied to connect the 1D parts ‘sideways’ to the 2D parts.

The elements to be discerned in a horizontal 1D-2D coupling are:

⋄ 1D network flow model,
⋄ 2D flood flow model,
⋄ horizontal 1D-2D coupling.

The two aspects to be considered in the coupling are the physical modeling of the coupling (→
the coupling equations) and the numerical implementation of the coupling (→ discretization
and solution procedure).

6.7.8.2 1D and 2D flow modeling

The contents in this paragraph is already described elsewhere in this document. However the
formulation is different. In the future we must repair this discrepancy.

The flow in the 2D parts of the domain is modeled by the 2Dh shallow-water equations. Be-
cause of the numerical implementation used in D-Flow FM, we write the 2Dh continuity equa-
tion and 2Dh momentum equation as:

∂h

∂t
+∇(hu) = 0 , (6.249a)

∂u

∂t
+ g∇ζ + bu = e , (6.249b)

where e represents all terms in the momentum equation that are discretized explicitly (convec-
tion, viscosity, Coriolis, wind force) and bu is the bed-friction term in quasi-linear form that is
discretized implicitly, and b is the linearization coefficient (e.g., g|u|/(C2h)) that is evaluated
explicitly (Picard linearization). Furthermore, h = h(x, t) = ζ − blk is the total water depth,
with ζ = ζ(x, t) and blk = blk(x) respectively surface elevation and stationary bed level
relative to a horizontal plane of reference, u = u(x, t) = (u, v)T is the horizontal velocity
vector, and ∇ = (∂/∂x, ∂/∂y)T is the horizontal gradient operator.

The numerical implementation of the 1Dh depth- and width-averaged shallow-water equations
in D-Flow FM is similar, hence we write these equations similarly:

∂A

∂t
+

∂(Au)

∂x
= q , (6.250a)

∂u

∂t
+ g

∂ζ

∂x
+ bu = e , (6.250b)
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with A the wetted cross-sectional area, u the average flow velocity over the wetted cross-
sectional area in the longitudinal direction x of the 1D channel, and with q the incoming lateral
discharge per unit length.

Because of the applied staggered-grid technique, momentum equation (6.249b) is discretized
per normal velocity component u that are defined at the cell faces:

un+1
f − un

f

∆t
+

g

∆xu

(
θ(ζn+1

2 − ζn+1
1 ) + (1− θ)(ζn2 − ζn1 )

)
+ bnun+1

f = en , (6.251)

with ζ2 and ζ1 the water level at the circumcenter downstream (in positive uf–direction) and
upstream (in negative uf–direction) of the cell face, with ∆xu the distance between these two
circumcenters, and with θ the parameter that determines the level of implicitness of the terms
taken implicitly.

The discretization of (6.250b) has exactly the same form as (6.251).

We write the mass-conservative finite volume discretization of (6.249a) in a generic form that
also represents the discretization of (6.250a):

V n+1
c − V n

c

∆t
+
∑

cell faces

An
f sc,f

(
θun+1

f + (1− θ)un
f

)
= ∆xqq

∗
c , (6.252)

with Vc = Vc(ζc) the water-level dependent volume of water that is contained in a control
volume (the grid cells) over which (6.249a) is integrated and subsequently discretized, with
theAf the surfaces of the vertical cell faces (where the velocity unknowns uf are located), with
q∗c the average value over the time step1 of some incoming lateral discharge per unit length
qc for the grid cell (mass control volume) under consideration, and with ∆xq the horizontal
length of the part of the cell where depth-integrated mass flow qc is specified. If both ζ
and d are approximated piecewise constant per grid cell, we have Vc = Sζ(ζc + dc), with
Sζ the constant horizontal surface of the control volume (the surface of a grid cell). In that
case the first term in the left-hand side of (6.252) can be written as (V n+1

c − V n
c )/∆t =

Sζ(ζ
n+1
c − ζnc )/∆t.

The sum in (6.252) is taken over the mass fluxes through the faces of the grid cell under
consideration (the faces of the mass control volume). They are approximated per cell face by
the product of the wetted cell-face surface Af = Af (ζ) and normal velocity uf 2. The direction
of the mass flux depends on the direction of uf relative to the grid cell (outward or inward) and
is taken care of by the switches sc,f for the faces of the cell:

sc,f =

{
1 if uf > 0 is directed outward of cell c ,
−1 if uf > 0 is directed inward of cell c .

(6.253)

We have added an external discharge qc in the right-hand side of (6.252) to have this dis-
cretization in a form that can also represent the discretization of 1D continuity equation (6.250a).
In that case we have Vc(ζ) = Aζ(ζ)∆xζ , with Aζ the water-level dependent wetted cross-
sectional area at the location of the ζ-point and with ∆xζ the length of a 1D control volume,

1The level of implicitness of qc turns out to be irrelevant in the horizontal 1D-2D coupling, hence no θ-weighing
here.

2We recall that often an upwind approximation is used for the wetted face surface Af in (6.252). Since Af is
evaluated explicitly, the upwind direction is determined by un

f and not by the velocity approximation that is actually
used per time step, i.e., θun+1

f + (1 − θ)un
f . As a result, the evaluation of Af may be downwind at locations

and time steps where the flow normal to a face changes direction. Since this normally occurs at at most a small
number of faces while uf at these faces will then be small, the destabilizing effect of this downwind discretization
is expected to be negligible.
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i.e., the distance between two adjacent u-points where the two mass fluxes in the sum of
(6.252) are computed. The generalization to ζ-points where several 1D branches are con-
nected to (connection nodes) is straightforward. The Af in the 1D mass fluxes are the wetted
vertical faces of the 1D mass control volumes that are normal to the channel axis, i.e., the
wetted cross-sectional areas at the location of the u-points.

The discretized time derivative in (6.252) is generally nonlinear in the unknown ζn+1
c , the

water level at the cell center/control volume. Its determination therefore requires linearization
in combination with an iterative solution procedure:

V n+1
c − V n

c

∆t
≈ V p

c + (ζp+1
c − ζpc )(∂V /∂ζ)p − V n

c

∆t
=

V p
c + (ζp+1

c − ζpc )S
p
ζ − V n

c

∆t
,

(6.254)

where the superscripts p and p + 1 indicate respectively the previous and the next iterative
approximation of variables at the next time level n+ 1.

Variable Sζ in (6.254) represents the (horizontal) surface of the mass control volume at the
free surface. In 1D we have Sζ = Wζ∆xζ , with Wζ = Wζ(ζc) the channel width at the free
surface at the location of the ζ-point, again generalizable in a straightforward manner when
multiple branches are joining in one 1D pressure point.

Substituting (6.254), we write (6.252) as (replacing un+1
f by up+1

f and q∗c by qp+1
c , since when

the ζn+1
c are determined iteratively, the un+1

f and q∗c are so as well):

Sp
ζ ζ

p+1
c

∆t
+
∑

cell faces

An
f sc,fθu

p+1
f −∆xqq

p+1
c

=
Sp
ζ ζ

p
c − V p

c

∆t
+

V n
c

∆t
−
∑

cell faces

An
f sc,f (1− θ)un

f .

(6.255)

We rewrite (6.251) as:

up+1
f = Rn

u − F n
u (ζ

p+1
2 − ζp+1

1 ) , (6.256)

with:

F n
u =

1

1 + bn∆t

g∆t

∆xu

θ, Rn
u =

1

1 + bn∆t

(
un
f +∆ten− g∆t

∆xu

(1−θ)(ζn2 −ζn1 )
)
. (6.257)

Substitution of (6.256) in (6.255) gives:(Sp
ζ

∆t
+
∑

cell faces

An
f θF

n
u

)
ζp+1
c −

∑
cell faces

An
f θF

n
u ζ

p+1
a −∆xqq

p+1
c

=
Sp
ζ ζ

p
c − V p

c

∆t
+

V n
c

∆t
−
∑

cell faces

An
f sc,f (1− θ)un

f −
∑

cell faces

An
f sc,fθR

n
u ,

(6.258)

with ζp+1
c the new value of ζ at the grid cell/control volume under consideration, and with the

ζp+1
a the value of ζp+1 at the adjacent grid cells/control volumes.

We recall that the above equations ((6.255), (6.256), (6.257), and (6.291)) have been formu-
lated such that they represent the equations used in 2D simulations as well as in 1D simula-
tions.
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The equations (6.291) per control volume, together with the discretized boundary conditions,
form the system of equations to be solved for the determination of the next iterative estimation
ζp+1 of the solution ζn+1 that is sought.

6.7.8.3 1D-2D lateral coupling.

Figure 6.14: Principle of the horizontal 1D-2D coupling with strict model separation, using
separate models for the 2D and the 1D areas coupled at the interfaces by
coupling conditions.

The approach that is used is very similar to the one presented in Kuiry et al. (2010). The
difference is their use of a quasi-2D horizontal flood inundation model, using a steady-state
friction formulation instead of the full 2D horizontal shallow-water momentum equations, and
solving the coupling between the 1D horizontal network flow model and the quasi-2D flood
model implicitly. The applied 1D-2D coupling equations, however, are the same as the ones
that we will use here.

The coupling equations are expressed in terms of the variables at the 1D-2D interface (cf.
Figure 6.14): zs is the height of the bank that separates the 1D and 2D domain, q2D-1D is
the lateral discharge per unit length from the 2D domain to the 1D domain, q1D-2D the lat-
eral discharge per unit length in the other direction, and ζ2D,I and ζ1D are the water level of
respectively the 2D domain and the 1D domain at the interface. NB, no subscript I in ζ1D,
because in 1D domains the water level is taken constant across the channel width. The water
level at the banks (and at a 1D-2D interface) is the same as the one at the center axis of the
channel and are all denoted by ζ1D (without subscript I).

1D-2D interfaces are not modeled in detail3 (by simulation) but globally by modeling the flow
across interfaces by means of a weir formulation. We follow the procedure that is customary in
the modeling of hydraulic structures and neglect any unsteady behavior across interfaces, i.e.,
the flow is locally assumed to be in equilibrium. Since the width of 1D-2D interfaces is very
small compared to the length scales of typical 1D-2D applications, this is a valid assumption.
Notice that, because the flow across interfaces is not discretized in detail (cf. Footnote 3),
a meaningful time-dependent discretization of the flow at interfaces is not possible anyway.

Modeling the flow across the bank at an interface by means of a standard weir formulation, the
conservation of mass and the transfer of normal momentum across interfaces are modeled

3Because the variation of velocity and water level across interfaces is not included in the discretization, a
reasonably accurate detailed modeling of the flow across an interface is not even possible.
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by:

q2D-1D = −q1D-2D , (6.259a)

q2D-1D =



0 if ζ2D,I − zs ≤ 0

and ζ1D − zs ≤ 0 ,

cecw2/3
√

2g/3(ζ2D,I − zs)
3/2 if ζ2D,I − zs > 0

and ζ2D,I − zs ≥ 3/2(ζ1D − zs) ,

cecw(ζ1D − zs)
√

2g(ζ2D,I − ζ1D) if 3/2(ζ1D − zs) > ζ2D,I − zs
and ζ2D,I − zs ≥ ζ1D − zs > 0 ,

−cecw2/3
√

2g/3(ζ1D − zs)
3/2 if ζ1D − zs > 0

and ζ1D − zs ≥ 3/2(ζ2D,I − zs) ,

−cecw(ζ2D,I − zs)
√

2g(ζ1D − ζ2D,I) if 3/2(ζ2D,I − zs) > ζ1D − zs
and ζ1D − zs ≥ ζ2D,I − zs > 0 .

(6.259b)

with ce the discharge coefficient [−] and cw the lateral contraction coefficient [−].

The second and fourth line in (6.259b) specify the modeling of free-weir flow and the free-
weir conditions when the flow is respectively from 2D to 1D and from 1D to 2D; the third and
fifth line pertain to the drowned-weir flow regime. We have verified that this weir formulation
is a continuous and continuously differentiable function of ζ1D and ζ2D,I , also at the water
levels where the weir flow changes regime or direction. Besides being essential for physically
meaningful behavior, this is also essential for smooth numerical behavior.

If required, ζ2D,I in (6.259b) could be corrected for the energy head normal to the interface
by adding u2

2D,I/(2g), with u2D,I the normal velocity in the 2D domain at the interface. At
present, this correction is assumed to be small enough to be negligible. Since 1D flow models
do not include the modeling of the flow across 1D channels (and normal to 1D-2D interfaces),
such a correction is not possible for ζ1D. Notice that an energy-head correction based on the
flow velocity tangential to the interface should not be applied, since flow parallel to a hydraulic
structure has an at most limited effect on the dynamics of the flow across a structure.

We recall that discharge q2D-1D (same for q1D-2D) is defined per unit length, i.e., no multiplica-
tion of the expressions in (6.259b) by the width Ws of the weir that here would be the length
of a stretch of channel bank.

We rewrite (6.259b) in the form of a space-discretized normal momentum equation adding a
time derivative4 to allow some (limited) modeling of the dynamic behavior of the flow at a 1D-
2D interface or to improve its numerical performance (the convergence speed of the iterative
solution procedure that will be applied to solve the interface equations, cf. Section 6.7.8.4
below). For the drowned-weir flow regime, i.e., for an interface where 3/2(ζ1D − zs) >
ζ2D,I−zs > 2/3(ζ1D−zs) > 0 (or, equivalently, 3/2(ζ2D,I−zs) > ζ1D−zs > 2/3(ζ2D,I−
zs) > 0),

4Convection terms and viscosity terms are not present in the momentum equation. Due to the geometry varia-
tions and hence flow variations at 1D-2D interfaces, cf. 6.14, these terms may locally be quite large. Integration
of the normal momentum equation in conservative form across an interface shows that the change of normal
momentum across an interface is determined by friction losses at the bottom (modeled by the last term in the
left-hand side of (6.260b)), by the overall water-level difference (modeled by the second term), and by the balance
of incoming and outgoing convection and viscous fluxes at the faces of the integration volume. The effect of the
latter is assumed to be small enough to be negligible compared to the effect of the bottom friction at an interface.
This is a reasonable assumption, since at the faces of an integration volume across an interface the convection
and viscosity fluxes are relatively small.
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the equations (6.259) become5 (explanations below):

AIsc,Iu2D,I = −∆xIq1D-2D , (6.260a)

∆x1D-2Dsc,I
∂u2D,I

∂t
+ αSF g(ζ1D − ζ2D,I) + αSF∆xu,IbS,Isc,Iu2D,I = 0 , (6.260b)

with bS,I the friction coefficient for a submerged weir at the interface, with AI the value of an
Af at the 1D-2D interface, i.e., the surface of a cell face at the interface, with u2D,I the velocity
component uf normal to that face (and hence normal to the interface) directed from the 2D
domain to the 1D domain if sc,I = 1 and in the opposite direction if sc,I = −1 , with ∆xI

the length of that cell face (the grid size along the interface), with ∆xu,I the value of a ∆xu

at the interface (the grid size normal to the interface), and with ∆x1D-2D an additional model
parameter that should normally be at most a fraction of the grid size near the interface, i.e.,
∆x1D-2D ≪ ∆xu,I . By definition, the ∆xu,I are the distances between the points where the
ζ2D,i and the ζ2D,v are located, i.e., the distances between the circumcenters of the 2D virtual
grid cells outside the interface and those of the adjacent 2D grid cells inside the 2D domain,
cf. Figure 6.14. Also by definition, i.e., because the 2D grid is orthogonal, the lines connecting
ζ2D,i and ζ2D,v points are normal to the 1D-2D interface.

Normalization coefficient αSF has been introduced in (6.260b) to ensure a continuous for-
mulation at the transition between drowned-weir flow and free-weir flow (at ζ2D,I − zs =
3/2(ζ1D − zs) and at ζ1D − zs = 3/2(ζ2D,I − zs)) when the time derivative of u2D,I is
present. Since αSF is included in both the second term and the third term of (6.260b), its
value is irrelevant when ∆x1D-2D = 0.

The choice for ∆xu,I in (6.260b) is arbitrary. We simply need a typical length scale normal
to the interface to enable recasting (6.259b) in the form of a space-discretized momentum
equation with a friction coefficient bS,I of dimension [1/s].

Equation (6.260a) has been obtained by replacing q2D-1D in (6.259a) by (Af/∆xI)sc,fuf =
(AI/∆xI)sc,Iu2D,I Parameter ∆x1D-2D in (6.260b) sort of represents the effective thickness
of the interface. It has merely been introduced as a modeling parameter; by increasing or de-
creasing ∆x1D-2D, the relative importance of the time derivative in (6.260b) can be increased
or decreased. Apart from that time derivative, which provides a relaxation effect that may be
physically realistic or that may be exaggerated for numerical purposes, (6.260b) is equivalent
with the third and fifth line in (6.259b) (drowned-weir flow regime) when we set αSF = 1 and
when bS,I is taken equal to:

bS,I =
A2

I |u2D,I |
2∆xu,I

(
∆xIcecw(ζ1D/2D,I − zs)

)2 , (6.261)

with ζ1D/2D,I equal to ζ1D if ζ2D,I ≥ ζ1D and equal to ζ2D,I if ζ1D > ζ2D,I . Notice the division by
∆xu,I in (6.261) that compensates for the multiplication by ∆xu,I in the last term of (6.260b).

5Kernkamp (2008) adds a time derivative to structure equations like (6.259b) to obtain an equation of the form
∂u2D-1D/∂t + |u2D-1D|u2D-1D/∆xu,I = |u2D-1D|/(∆xu,IbS,I) × g(ζ2D,I − ζ1D)/∆xu,I . The balance between the
time derivative and the water-level gradient in this equation depends on the modeling of the friction loss across the
structure, which is not in agreement with a momentum equation. In particular, for a very smooth weir modeled by
a very small friction coefficient bS,I , the effect of the time derivative in this equation vanishes. On the other hand,
for a very large friction coefficient (and/or very small |u2D-1D|) the balance between water-level gradient and friction
in (6.259b) is replaced by a balance between time derivative and friction. This may result in structures reacting
unrealistically slow to the flow dynamics. In contrast, (6.260b) has the correct form of a momentum equation and
hence the correct physical dependence on bS,I .

Another important difference is that (6.260b) has been designed such that the transition between drowned-weir
flow and free-weir flow is continuous and smooth, just like in structure equation (6.259b) (see the explanation on
normalization coefficient αSF ). This is not the case in the Kernkamp formulation.
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For free-weir flow across an interface we can use the same equation (6.260b), but with ζ1D
replaced by zs if ζ2D,I > zs and ζ2D,I − zs ≥ 3/2(ζ1D − zs), with ζ2D,I replaced by zs if
ζ1D > zs and ζ1D − zs ≥ 3/2(ζ2D,I − zs), with αSF = 1/3, and with bS,I replaced by bF,I ,
the friction coefficient for free-weir flow across the interface:

bF,I =
A2

I |u2D,I |
(2/3)3∆xu,I

(
∆xIcecw(ζ1D/2D,I − zs)

)2 , (6.262)

with ζ1D/2D,I equal to ζ2D,I if ζ2D,I ≥ ζ1D and equal to ζ1D if ζ1D > ζ2D,I . This is opposite to
the definition of ζ1D/2D,I in (6.261), whence the coefficient (2/3)3 instead of 2 in the denom-
inator. This coefficient compensates for the sudden change in value of ζ1D/2D,I − zs at the
transition from drowned-weir flow to free-weir flow or vice versa at ζ2D,I−zs = 3/2(ζ1D−zs)
or at ζ1D − zs = 3/2(ζ2D,I − zs).

Summarizing, (6.260a) is always applied, in combination with:

IF ζ2D,I − zs ≤ 0 AND ζ1D − zs ≤ 0 THEN
! no flow across interface
u2D,I = 0 (or, equivalently, q1D-2D = 0)

ELSE IF ζ2D,I − zs ≥ 3/2(ζ1D − zs) THEN
! free-weir flow from 2D to 1D
(6.260b) with αSF = 1/3, with ζ1D ⇐ zs, and with bS,I ⇐ bF,I where ζ1D/2D,I ⇐ ζ2D,I

ELSE IF ζ1D − zs ≥ 3/2(ζ2D,I − zs) THEN
! free-weir flow from 1D to 2D
(6.260b) with αSF = 1/3, with ζ2D,I ⇐ zs, and with bS,I ⇐ bF,I where ζ1D/2D,I ⇐ ζ1D

ELSE IF ζ2D,I ≥ ζ1D THEN
! drowned-weir flow from 2D to 1D
(6.260b) with αSF = 1, and with bS,I where ζ1D/2D,I ⇐ ζ1D

ELSE ! i.e. IF ζ1D > ζ2D,I
! drowned-weir flow from 1D to 2D
(6.260b) with αSF = 1, and with bS,I where ζ1D/2D,I ⇐ ζ2D,I

ENDIF

We continue with (6.260a) and (6.260b) ‘as is’, i.e., we begin with considering a drowned-weir
flow across an interface. The free-weir flow case will be considered afterwards.

The discretization of (6.260) in time must be in agreement with the discretizations for the
continuity equation and the momentum equation, but must also be in agreement with equation
(6.259b):

An
I sc,I

(
θun+1

2D,I + (1− θ)un
2D,I

)
= −∆xIq

∗
1D-2D , (6.263a)

∆x1D-2Dsc,I
un+1

2D,I − un
2D,I

∆t
+ αSF g(ζ

n+1
1D − ζn+1

2D,I ) + αSF∆xu,Ib
n
S,Isc,Iu

n+1
2D,I = 0 .

(6.263b)

We have decided to evaluate bS,I (and bF,I ) explicitly, whence the superscript n of bnS,I in

(6.263b). This makes the equation linear in the unknowns un+1
2D,I , ζn+1

1D and ζn+1
2D,I , and therefore

relatively easy to solve. It also seems to be the procedure followed in D-Flow FM, cf. Kernkamp
(2008). On the other hand, to ensure the best nonlinear performance, the time-dependent
variables |u2D,I | and ζ1D/2D in bS,I (and bF,I ) should be evaluated at the next time level n+1.
Note that the time discretization of AI in bS,I (and bF,I ) should be in agreement with that of
the Af in the continuity discretisation, hence AI in bS,I (and bF,I ) is always to be evaluated at
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previous time level n. Of course, if bS,I is (partially) evaluated at the next time level, (6.263b)
becomes a nonlinear equation that is to be solved iteratively.

For slow variation of the flow near the interface or when a small time step ∆t is used, there
will be hardly any difference in the results obtained with bS,I (bF,I ) evaluated at n and those
obtained with bS,I (bF,I ) at n+1. At transient flow conditions near a 1D-2D interface, however,
the differences may be large. This applies in particular to (free-weir!) flow at the onset of
flooding, i.e., there may be noticeable temporary differences between results obtained with
bF,I evaluated at n and those with bF,I at n+ 1. Replacing next time level n+ 1 by iteration
index p + +1 and separating terms with variables at the next iteration level p + 1 (that are
to be determined) from terms that only depend on known information at previous time level n,
(6.263) becomes:

θAn
I sc,Iu

p+1
2D,I +∆xI q

p+1
1D-2D = −(1− θ)An

I sc,Iu
n
2D,I ,(∆x1D-2D

∆t
+ αSF∆xu,Ib

n
S,I

)
sc,Iu

p+1
2D,I + αSF g(ζ

p+1
1D − ζp+1

2D,I) =
∆x1D-2D

∆t
sc,Iu

n
2D,I .

(6.264)

To get the coupling conditions formulated in the water-level variables at the cell centers of the
2D domain, we use the linear interpolation ζp+1

2D,I = (ζp+1
2D,i + ζp+1

2D,v)/2 and use (6.256) at the

cell faces along the interface to replace up+1
2D,I . The latter reads:

sc,Iu
p+1
2D,I = sc,IR

n
I − F n

I (ζ
p+1
2D,v − ζp+1

2D,i ) , (6.265)

with Rn
I and F n

I as in (6.257), and with ζp+1
2D,v and ζp+1

2D,i as in Figure 6.14. The result is:

−θAn
IF

n
I (ζ

p+1
2D,v − ζp+1

2D,i ) + ∆xI q
p+1
1D-2D = −An

I sc,I

(
θRn

I + (1− θ)un
2D,I

)
,

(6.266a)

−
(∆x1D-2D

∆t
+ αSF∆xu,Ib

n
S,I

)
F n
I (ζ

p+1
2D,v − ζp+1

2D,i ) + αSF g
(
ζp+1

1D −
ζp+1

2D,i + ζp+1
2D,v

2

)
=

∆x1D-2D

∆t
sc,Iu

n
2D,I −

(∆x1D-2D

∆t
+ αSF∆xu,Ib

n
S,I

)
sc,IR

n
I .

(6.266b)

Notice that these equations define an implicit coupling across the 1D-2D interfaces, since
the unknowns of the 2D domain (ζ2D,i, ζ2D,v) and those of the 1D domain (q1D-2D, ζ1D) are
all at the next iteration level p+ 1. This may strongly complicate the implementation of the
algorithm. It would require the construction of a system of equations composed of elements
of both the 2D model and the 1D model, which is especially not obvious when dealing with
separate implementations, as is the intention here (D-Flow FM as the 2D model, SOBEK
as the 1D model). Nevertheless, as long as the 1D and 2D grids match at the interfaces6

and the 1D and 2D models all use the same time step7, a direct implicit coupling, although
still complex, might be feasible. However, a general and much more flexible 1D-2D coupling
with non-matching grids at the interface and possibly the use of different time steps in the
2D and 1D model is virtually impossible with an implicit coupling; its implementation would
be far too complex. There is also a numerical reason for not applying an implicit coupling.

6What is meant here is that the space discretizations should match. When the 1D models and 2D models use
the same type of space discretizations (as is the case here) this is equivalent with the condition that the grids
should match.

7Not only the time steps, but the applied time integration methods as a whole should match. When the 1D
models and 2D models use the same type of time integration methods (as is the case here) this is equivalent with
the condition that the time steps should match.
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When eliminating qp+1
1D-2D in (6.266) (using (6.291) for the 1D channel with lateral discharge

qp+1
c equal to −qp+1

1D-2D
8, the resulting system of equations for the unknowns ζp+1 will have

a positive-definite symmetric matrix, because of the skew-symmetry of the discretization of
the water-level gradient in (6.251) (and in (6.256) and (6.265)) and in (6.260b) (and (6.263b)).
Systems of equations with a positive-definite symmetric matrix are guaranteed to be well
posed and to be always solvable using a (preconditioned) CG iterative method, which is why
this method is applied in D-Flow FM and SOBEK.

The skew-symmetry in (6.260b) (and (6.263b)) is only because of the drowned-weir case
that we are considering for the moment. When the flow across the 1D-2D interface is to be
modeled by a free weir an expression similar to (6.260b) applies that, however, does not
depend on either ζ1D or ζ2D,I , cf. the second and fourth line in (6.259b). Equations of the
form (6.260b) and (6.263b), and hence of the form (6.266b), still apply, but with bnS,I replaced
by bnF,I , with αSF = 1/3 instead of αSF = 1, and, most importantly, with the water-level
difference ζ1D − ζ2D,I replaced by either ζ1D − zs or zs − ζ2D,I , depending on whether the
free-weir flow is from the 1D domain to the 2D domain or in the opposite direction. Such
water-level differences destroy the skew-symmetry of the equations and hence the symmetry
of the system of ζp+1 equations.

To circumvent this problem, Kernkamp (2008) replaces ζp+1
1D −zs by ζp+1

1D −ζp+1
2D,I+ζp2D,I−zs

(similar for zs− ζp+1
2D,I ). The replacement of ζp+1

1D −zs by (ζp+1
1D − ζp+1

2D,I)(ζ
p
2D,I −zs)/(ζ

p−1
1D −

ζp−1
2D,I) seems to have been used as well. Details on the performance and stability of these

adaptations are not known. It is clear that they make the free-weir flow in each iteration a
function of both ζ1D and ζ2D,I , with the independence of either ζ2D,I or ζ1D to be restored
iteratively. This is likely to have a negative effect on the convergence speed of the nonlinear
iteration process. We remark that this situation occurs with any implicit free-weir coupling
when the matrix of the free-surface systems of equations needs to be kept symmetric. This
includes the embedded horizontal 1D-2D coupling, all vertical 1D-2D couplings, but probably
also the implementation of weirs and other structures in SOBEK and in D-FLOW FM.

Non-symmetric systems of equations are avoided altogether by not applying the coupling
equations (6.266) implicitly, but explicitly. This also makes it feasible to develop and implement
(in the future) a 1D-2D coupling that can handle non-matching grids at the interface and
possibly the use of different time steps in the 2D and 1D model.

An explicit coupling involves a solution procedure where the implicit coupling equations (6.266)
are solved iteratively per nonlinear iteration p+1. This coupling iteration process is best com-
bined with the nonlinear iteration loop. After all, the nonlinear iteration process per 1D and
2D model only needs to be solved up to (a fraction of) the convergence level of the coupling
in between them. Solving the 1D and 2D models with a much higher precision than the cou-
pling convergence error (a measure of |ζp+1

2D,I − ζp2D,I | and |ζp+1
1D − ζp1D|) would be a waste of

computational effort.

Although an explicit coupling can be realized by applying one of the coupling equations (6.266)
in one direction and the other one in the other direction (the naive coupling that is usu-
ally applied), a better performance is obtained by applying in each direction an optimized
(and obviously different) combination. To determine this combination, we first notice that for
∆x1D-2D = 0 and no friction losses across the 1D-2D interface (i.e., bnS,I = 0), (6.266b)

reduces to ζp+1
1D = (ζp+1

2D,i + ζp+1
2D,v)/2, i.e., coupling condition (6.266b) essentially imposes a

relation between the water levels at both sides of the interface (Dirichlet condition). The other

8We recall that q1D-2D has been defined as the flux from the 1D domain to the 2D domain, while qc has been
defined as an incoming flux, here incoming to the 1D domain, cf. (6.252).

Deltares 115 of 207



DRAF
T

D-Flow Flexible Mesh, Technical Reference Manual

coupling condition, (6.266a), obviously imposes a relation between the (lateral) velocities at
both sides, cf. (6.263a) where this condition originates from. It is a Neumann condition for
ζ2D,I , the water levels of the 2D domain.

A suitable combination of coupling equations for the transfer of information to a 2D domain
is one based on the concept of absorbing boundary conditions, see, e.g., Ye et al. (2011).
The simplest form is the one that specifies the incoming Riemann invariant in normal direc-
tion −h2D,Isc,Iu2D-1D +

√
gh2D,Iζ2D,I

9, with h2D,I = ζ2D,I + d2D,I the total water depth
of the 2D domain at the interface. This choice is equivalent with the Sommerfeld radiation
condition. Formulated in the discretized water level this condition reads (ζ2D,i + ζ2D,v)/2 +√
gh2D,I∆t/∆xu,I(ζ2D,v−ζ2D,i). Because all flow dynamics in lateral direction is neglected

in a 1D model, we cannot use at a 1D-2D interface the concept of Riemann invariants in the
other direction for the transfer of information to a 1D domain, so here we have to come up with
something different.

To allow a full optimization of the coupling, we propose to use a parameterized combination
of −1/(αSFg) times (6.266b) and −1/(θAn

IF
n
I ) times (6.266a). The normalization is to get

(6.266b) in the form of (almost) a Dirichlet condition for the water level of the 2D domain at
the interface, and (6.266a) in the form of a Neumann condition. The combination is the Robin
coupling condition:

αn
2D

ζp+1
2D,v + ζp+1

2D,i

2
+ (βn

2D + αn
2Df

n
S,IF

n
I )(ζ

p+1
2D,v − ζp+1

2D,i )

= αn
2Dζ

p
1D + βn

2D
∆xI

θAn
IF

n
I

qp1D-2D

+ αn
2Dsc,I

(
fn
S,IR

n
I −

∆x1D-2D

αSF g∆t
un

2D,I

)
+ βn

2D
sc,I
θF n

I

(
θRn

I + (1− θ)un
2D,I

)
,

(6.267)

with (drowned-weir flow → substitute αSF = 1):

fn
S,I =

( ∆x1D-2D

αSF∆xu,I

+ bnS,I∆t
)∆xu,I

g∆t
=
(∆x1D-2D

∆xu,I

+ bnS,I∆t
)∆xu,I

g∆t
. (6.268)

The coupling parameters αn
2D and βn

2D (and the coupling parameters that will be introduced
later) are allowed to vary in time, whence the superscript n. Like all other coefficients in the
above equations (and like many terms and coefficients in the D-Flow FM and SOBEK time
integration scheme) they are evaluated explicitly at the previous time level. For the moment
we do not consider the variation of coupling parameters inside the coupling iteration loop,
evaluating them explicitly at the previous iteration level p. In view of the strongly explicit na-
ture of the solution algorithm as a whole, we do not expect this to have a positive effect on
the convergence properties of the 1D-2D coupling significant enough to be worth considering.
Obviously the scaling of the two coupling parameters αn

2D and βn
2D is irrelevant. The multipli-

cation of αn
2D and βn

2D by any non-zero factor has no effect on the coupling, indicating that a
single coupling parameter would have sufficed. We have chosen to use two coupling parame-
ters instead of one (replacing αn

2D by, e.g., 1− βn
2D), because it facilitates the implementation

of the coupling. In particular, the use of two coupling parameters makes it easy to set either
one of them to 0 or 1 and the other respectively to 1 or to some optimized value.

By choosing αn
2D = 1 and βn

2D = 1/2 − fn
S,IF

n
I , coupling equation (6.267) only specifies

ζp2D,v, which variable can then immediately be eliminated from the system of equations for the

9The minus sign of sc,Iu
p
2D-1D is because the positive direction at cell faces has been defined as the direction

pointing outward of a cell. This applies to the 2D faces at the boundaries of a 2D domain as well, and hence to
the 2D faces at a 1D-2D interface.
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ζp+1 of the 2D domains. The simplicity and ease of implementation of this coupling seems to
make this choice of βn

2D (with αn
2D = 1) attractive. We should, however, mainly be concerned

with the convergence speed of the iterative explicit coupling per time step and optimize βn
2D

accordingly.

For vanishing time derivative (∆x1D-2D = 0) and vanishing friction (bnS,I = 0) at the 1D-2D
interface (→ fn

S,I = 0), coupling equation (6.267) reduces to:

αn
2D

ζp+1
2D,v + ζp+1

2D,i

2
+ βn

2D(ζ
p+1
2D,v − ζp+1

2D,i ) = αn
2Dζ

p
1D + βn

2D
∆xI

θAn
IF

n
I

qp1D-2D

+ βn
2D

sc,I
θF n

I

(
θRn

I + (1− θ)un
2D,I

)
.

(6.269)

In the second line only terms at the previous time level that do not affect the convergence
properties of the explicit 1D-2D coupling.

For αn
2D = 1 and βn

2D = 0, (6.269) reduces to (ζp+1
2D,v + ζp+1

2D,i )/2 = ζp1D, the discretization

and iterative approximation of ζn+1
1D − ζn+1

2D,I = 0. For αn
2D = 0 and βn

2D = 1, we get

ζp+1
2D,v− ζp+1

2D,i = 1/(θF n
I )
(
qp+1

1D-2D∆xI/A
n
I +sc,I(θR

n
I +(1−θ)un

2D-1D)
)
. Using (6.265), this

can be written as sc,I
(
θup+1

2D,I + (1 − θ)un
2D,I

)
= −qp1D-2D∆xI/A

n
I , showing that the other

coupling contained in (6.269) is of course (6.263a), the equation ensuring mass conservation
across the interface. Equation (6.267) defines the coupling from the 1D domain to the 2D
domain. The coupling in the other direction, from the 2D domain to the 1D domain, is similar:

αn
1Dζ

p+1
1D − βn

1D
∆xI

θAn
IF

n
I

qp+1
1D-2D

= αn
1D

ζp2D,i + ζp2D,v

2
+ (βn

1D − αn
1Df

n
S,IF

n
I )(ζ

p
2D,i − ζp2D,v)

− αn
1Dsc,I

(
fn
S,IR

n
I −

∆x1D-2D

αSF g∆t
un

2D,I

)
+ βn

1D
sc,I
θF n

I

(
θRn

I + (1− θ)un
2D,I

)
.

(6.270)

The minus sign of the second term in the left-hand side is because qp+1
1D-2D is the outgoing flux

from the 1D domain to the 2D domain, not a flux entering the 1D domain, like qp+1
c in (6.255)

and (6.291). NB, (6.270) and (6.267) are obviously equivalent. Apart from the iteration levels
p+ 1 and p in the first and second line, the former can be obtained from the latter by setting
αn

1D = αn
2D and βn

1D = −βn
2D. The change of sign in the latter takes account of the fact

that quantities at an interface that are normal to that interface and hence have a direction with
respect to the interface (like velocity, mass flux and water-level gradient across the interface)
change sign when they are considered in opposite direction.

Equation (6.267) and (6.270) are for the case that the flow across the 1D-2D interface is
modeled as a drowned weir. If the flow is to be modeled by a free weir, one of the water levels
in (6.260b) ((6.263b)) is to be replaced by zs. (Also bS,I and bnS,I are to be replaced by bF,I
and bnF,I , while αSF = 1/3 instead of αSF = 1 is to be used.) For free-weir flow from the 2D

domain to the 1D domain, this means replacement of ζp+1
1D in (6.266b) by zs, in which case

the coupling equation becomes a boundary condition for the 2D domain:

ζp+1
2D,v + ζp+1

2D,i

2
+ fn

F,IF
n
I (ζ

p+1
2D,v − ζp+1

2D,i ) = zs+ sc,I

(
fn
F,IR

n
I −

∆x1D-2D

αSF g∆t
un

2D,I

)
, (6.271)

with (free-weir flow → substitute αSF = 1/3):

fn
F,I =

( ∆x1D-2D

αSF∆xu,I

+ bnF,I∆t
)∆xu,I

g∆t
=
(3∆x1D-2D

∆xu,I

+ bnF,I∆t
)∆xu,I

g∆t
. (6.272)
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The discharge determined at the boundary of the 2D domain is then simply imposed as mi-
nus a lateral discharge of the 1D domain (one-sided coupling from the 2D domain to the 1D
domain). That is equivalent with applying (6.270) for αn

1D = 0 and βn
1D = 1.

Note that (6.271) is obtained from (6.267) by substituting ζp1D = zs, αn
2D = 1 and βn

2D = 0. In
other words, coupling conditions (6.267) and (6.270) can be used for both the drowned-weir
case and the free-weir case when the flow is from the 2D domain to the 1D domain.

Likewise, if we have free-weir flow from the 1D domain to the 2D domain, (ζp+1
2D,i + ζp+1

2D,v)/2 in
(6.266b) is to be replaced by zs. However, unlike the previous case, this does not lead to an
equation with only variables defined in the 1D domain, because (6.260b) has been formulated
in terms of the velocity u2D,I at the 2D side of the interface. An equation independent of
variables at the next time level in the 2D domain is obtained by eliminating up+1

2D,I from the

equations (6.264) and substituting ζp+1
2D,I = zs in the result:

ζp+1
1D − fn

F,I

∆xI

θAn
I

qp+1
1D-2D = zs + sc,I

(
fn
F,I

1− θ

θ
+

3∆x1D-2D

g∆t

)
un

2D,I . (6.273)

The discharge determined at the boundary of the 1D domain is then simply imposed as dis-
charge boundary condition to the 2D domain (one-sided coupling from the 1D domain to the
2D domain). That is equivalent with applying (6.267) for αn

2D = 0 and βn
2D = 1 (see interpre-

tation of (6.269) directly after that equation).

Similar as before with free-weir flow from the 2D domain to the 1D domain, we have that
equation (6.273) is included in (6.270). It is obtained by replacing fn

S,I by fn
F,I and setting

αSF = 1/3 (for a free-weir formulation), and by substituting (ζp2D,i+ζp2D,v)/2 = zs, αn
1D = 1,

and βn
1D = fn

F,IF
n
I . So coupling conditions (6.267) and (6.270) can also be used for both

the drowned-weir case and the free-weir case when the flow is from the 1D domain to the
2D domain. Care should be taken in case of extremely small fn

F,I (its value becomes zero for
∆x1D-2D = 0 and bnF,I = 0). For very small fn

F,I (which implies very small ∆x1D-2D) (6.273)
reduces to the condition ζ1D = zs. This means that the water level in the 1D channel would
become independent of the flow dynamics, which does not make sense. The same applies to
(6.271) by the way. That equation reduces for very small fn

F,I (and hence very small ∆x1D-2D)
to the condition (ζp2D,v + ζp2D,i)/2 = zs. Although physically incorrect, it does not pose a
computational problem, so in that sense we do not have to be concerned with very small fn

F,I
when considering a free-weir flow from 2D to 1D. NB, the situation is different for a drowned
weir. As shown before, for fn

S,I very small that coupling reduces to (ζp+1
2D,v + ζp+1

2D,i )/2 = ζp1D,
next to mass conservation (6.260a). This is the correct physical limit for a large water depth
and hence very low friction losses at and across a 1D-2D interface.

6.7.8.4 Analysis of the horizontal 1D-2D coupling

6.7.8.4.1 Preliminaries

To analyze and optimize the performance of the explicit solution procedure with strict model
separation for the implicit horizontal 1D-2D coupling, we consider rectangular domains, uni-
form conditions, and uniform rectangular grids:

⋄ a straight 1D-2D interface, arbitrarily set at the location x = 0;
⋄ a straight 1D channel with uniform depth h1D, width W1D and friction coefficient b1D at the

side x > 0 of the interface, numerically modeled using a uniform grid with cells of size
∆y;
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⋄ a 2D area with uniform depth h2D and friction coefficient b2D at the side x < 0 of the
interface, numerically modeled using a uniform grid with rectangular cells of size ∆x by
∆y;

⋄ uniform friction coefficient bI at the interface of uniform thickness ∆x1D-2D, cf. equa-
tion (6.260b).

The uniform conditions make it possible to perform a normal-mode analysis.

The underlying idea is that the modeling near 1D-2D interfaces will generally be such
that in the optimization of the coupling parameters αn

2D, βn
2D, αn

1D and βn
1D in (6.267) and

(6.270), the conditions are smooth enough for the coefficients to be assumed locally
constant, for the 1D-2D interface to be assumed locally straight, and for the grid to be as-
sumed locally uniform. If the conditions are not smooth (strong variations of water depth
or grid size near a 1D-2D interface, strong bends in a 1D-2D interface), the optimization
is assumed to give reasonable approximations of the optimal coupling parameters, espe-
cially when non-smooth conditions occur in only a small number of locations. Note that
the normal-mode analysis presented below is the only feasible way to arrive at reason-
able and simply to use estimations of the optimal coupling parameters that will perform
better than no optimization.

In the straight and uniform 1D domain with uniform grid, water-level equation (6.291) be-
comes:

(1 + 2CFL21D)ζ
p+1
j − CFL21D(ζ

p
j−1 + ζp+1

j+1 )− qp+1
c,j ∆t/W1D = rhsn1D,j , (6.274)

with j the control volume index in y–direction and with rhsn1D,j all the known terms at the
previous time level n (note that the term (Sp

ζ ζ
p
c−V p

c )/∆t in (6.291) vanishes for the constant-
coefficient case that is considered here). Variable CFL1D represents the coefficient∆tAn

f θF
n
u /S

p
ζ

in the y– or channel direction that for this uniform case becomes equal to:

CFL1D =
θ∆t

√
gh1D

∆y
√
1 + b1D∆t

. (6.275)

In the uniform 2D domain with uniform rectangular grid, (6.291) becomes:

(1+2CFL22D,x+2CFL22D,y)ζ
p+1
i,j −CFL22D,x(ζ

p+1
i−1,j+ζp+1

i+1,j)−CFL22D,y(ζ
p+1
i,j−1+ζp+1

i,j+1) = rhsn2D,i,j ,

(6.276)

with i, j the control volume indices in x–, y–direction, rhsn2D,i,j all terms at time level n, and
with CFL2D,x and CFL2D,y representing the coefficient ∆tAn

f θF
n
u /S

p
ζ in the two coordinate

directions that here become equal to:

CFL2D,x =
θ∆t

√
gh2D

∆x
√
1 + b2D∆t

, CFL2D,y =
θ∆t

√
gh2D

∆y
√
1 + b2D∆t

. (6.277)

Substituting F n
I = 1/(1+b2D∆t)×θg∆t/∆x (cf. (6.257)) and An

I = ∆xIh2D,I = ∆xIh2D
(depth across 2D domain is uniform), equation (6.267) with (6.268) becomes (coupling from
1D to 2D for drowned-weir flow):

αn
2D

ζp+1
2D,v + ζp+1

2D,i

2
+
(
βn

2D + αn
2D
θ(∆x1D-2D/∆x+ bI∆t)

1 + b2D∆t

)
(ζp+1

2D,v − ζp+1
2D,i )

= αn
2Dζ

p
1D + βn

2D
∆x(1 + b2D∆t)

θ2gh2D∆t
qp1D-2D + rhsn1D-2D ,

(6.278)
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with as before ∆x1D-2D ≪ ∆x the effective thickness of the interface, and with all known
terms at previous time level n collected in rhsn1D-2D. Introducing non-dimensional parameter:

b′I =
θ(∆x1D-2D/∆x+ bI∆t)

1 + b2D∆t
(6.279)

and substituting CFL2D,x as defined in (6.277), we write (6.278) as:

αn
2D

ζp+1
2D,i + ζp+1

2D,v

2
+ (βn

2D + αn
2Db

′
I)(ζ

p+1
2D,v − ζp+1

2D,i )

= αn
2Dζ

p
1D + βn

2D
∆t

∆xCFL22D,x
qp1D-2D + rhsn1D-2D .

(6.280)

For αn
2D = 1 and βn

2D = 1/2 − b′I , the contribution of ζp2D,i in the left-hand side of (6.280)
vanishes and the coupling equation reduces to:

ζp+1
2D,v = ζp1D + (1/2− b′I)

∆t

∆xCFL22D,x
qp1D-2D + (rhsn1D-2D)αn

2D=1,βn
2D=1/2−b′I

. (6.281)

This equation is not to be applied as such. As mentioned before, better coupling performance
is obtained with (6.280) ((6.278)) and an optimized βn

2D. However, a parameterized combi-
nation of (6.281) at different locations along the 1D-2D interface can be added to (6.280) to
enhance the possibilities for optimizing the coupling performance. Since (6.280) and (6.281)
are both valid coupling equations, any linear combination is a valid coupling as well. This gen-
eralization of couplings between domains is well known in the field of domain decomposition.

An interesting extension of coupling equation (6.280) applied along the interface at the indices
j is to combine it with the coupling equation consisting of minus two times (6.281) at j plus
(6.281) at j − 1 and j + 1. That addition represents the finite difference discretization of the
second derivative of (6.281) along the 1D-2D interface, which vanishes for a solution mode
that is uniform along the interface (second-derivative discretization is zero for a constant)
and is maximum for a highly oscillatory solution mode along the interface (second-derivative
discretization is maximum for the wiggle mode). The extended coupling equation reads:

αn
2D

ζp+1
2D,v,j + ζp+1

2D,i,j

2
+ (βn

2D + αn
2Db

′
I)(ζ

p
2D,v,j − ζp2D,i,j)

− δn2D(ζ
p+1
2D,v,j−1 − 2ζp+1

2D,v,j + ζp+1
2D,v,j+1)

= αn
2Dζ

p
1D,j + βn

2D
∆t

∆xCFL22D,x
qp1D-2D,j

− δn2D

(
ζp1D,j−1 − 2ζp1D,j + ζp1D,j+1

+ (1/2− b′I)
∆t

∆xCFL22D,x
(qp1D-2D,j−1 − 2qp1D-2D,j + qp1D-2D,j+1)

)
+ rhsn1D-2D,j − δn2D(rhsn1D-2D,j−1 − 2rhsn1D-2D,j + rhsn1D-2D,j+1)αn

2D=1,βn
2D=1/2−b′I

.

(6.282)

Note the dependence of the rhsn1D-2D on αn
2D and βn

2D.

Coupling equation (6.282) uses the same computational stencil (minus one unknown) as
equation (6.291) and preserves (after a proper scaling) the symmetry of the system of the
equations. For suitable choices of the coupling parameters (αn

2D = 1, βn
2D > −b′I , and

δn2D ≥ 0) the positive definiteness of the system is preserved as well.
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Parameter δn2D and accompanying terms have been introduced in (6.282) to investigate the
gain in performance that may be obtained with this extension of coupling (6.280), with the
intention to figure out if implementation of it (somewhere in the future) may be worth consid-
ering. NB, the combination of (6.280) with the second difference of (6.280) for two different
values of βn

2D (taking αn
2D = 1) will not be considered. Although in principle possible, it

would destroy the symmetry of the matrix to be solved in 2D domains and would extend near
1D-2D interfaces the computational stencil of the ζp+1 equations to be solved (the left-hand
side of (6.291)). Only the combination of (6.280) with the second difference of (6.280) for
αn

2D = 1 and βn
2D = 1/2− θb′I , i.e., with the second difference of (6.281), is feasible enough

to consider for implementation.

For αn
2D = 1 and βn

2D = −1/2− b′I , the contribution of ζp+1
2D,v in the left-hand side of (6.280)

vanishes. The result is an equation totally unsuitable for the coupling of the 1D domain to the
2D domain, among other things because combination with the equations (6.291) destroys the
positive definiteness of the system:

ζp+1
2D,i = ζp1D + (−1/2− b′I)

∆t

∆xCFL22D,x
qp1D-2D + (rhsn1D-2D)αn

2D=1,βn
2D=−1/2−b′I

.

However, the equation might be useful in combination with (6.280). The result is an equation
similar to (6.282):

αn
2D

ζp+1
2D,v,j + ζp+1

2D,i,j

2
+ (βn

2D + αn
2Db

′
I)(ζ

p+1
2D,v,j − ζp+1

2D,i,j)

− δn2D(ζ
p+1
2D,i,j−1 − 2ζp+1

2D,i,j + ζp+1
2D,i,j+1)

= αn
2Dζ

p
1D,j + βn

2D
∆t

∆xCFL22D,x
qp1D-2D,j

− δn2D

(
ζp1D,j−1 − 2ζp1D,j + ζp1D,j+1

− (1/2 + b′I)
∆t

∆xCFL22D,x
(qp1D-2D,j−1 − 2qp1D-2D,j + qp1D-2D,j+1)

)
+ rhsn1D-2D,j − δn2D(rhsn1D-2D,j−1 − 2rhsn1D-2D,j + rhsn1D-2D,j+1)αn

2D=1,βn
2D=−1/2−b′I

.

(6.283)

The advantage of (6.283) over (6.282) is that it fits well within the current implementation of
the solution procedure of (6.291), in which the virtual unknowns ζp+1

2D,v have been eliminated.

Unlike (6.282) that has several unknowns ζp+1
2D,v in its left-hand side, (6.283) with only ζp+1

2D,v,j in
its right-hand side does not require the extension of the current matrix solver with equations
for the virtual unknowns. On the other hand, we expect the performance of (6.283) to be not
as good as that of (6.282). In particular, we expect the demand for positive definiteness to
impose a restriction on the choice of δn2D that will hamper full optimization.

Exactly the same procedure as for the coupling from the 1D domain to the 2D domain is
applied to construct the coupling in the other direction, from the 2D domain to the 1D domain.
Substitution of F n

I = 1/(1 + b2D∆t) × θg∆t/∆x and An
I = ∆xIh2D,I = ∆xIh2D in

(6.270) yields, using (6.268) (coupling from 2D to 1D for drowned-weir flow):

αn
1Dζ

p+1
1D − βn

1D
∆x(1 + b2D∆t)

θ2gh2D∆t
qp+1

1D-2D

= αn
1D

ζp2D,i + ζp2D,v

2
+
(
βn

1D − αn
1D
θ(∆x1D-2D/∆x+ bI∆t)

1 + b2D∆t

)
(ζp2D,i − ζp2D,v) + rhsn2D-1D .

(6.284)
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Notice the similarity between this equation and (6.278).

Upon substitution of b′I as defined in (6.279) and CFL2D,x as defined in (6.277), (6.284) be-
comes:

αn
1Dζ

p+1
1D − βn

1D
∆t

∆xCFL22D,x
qp+1

1D-2D

= αn
1D

ζp2D,i + ζp2D,v

2
+ (βn

1D − αn
1Dθb

′
I)(ζ

p
2D,i − ζp2D,v) + rhsn2D-1D ,

(6.285)

which is similar to (6.280).

The most useful simplified version of coupling (6.285) is the one that is obtained for αn
1D = 1

and βn
1D = 0:

ζp+1
1D =

ζp2D,i + ζp2D,v

2
− b′I(ζ

p
2D,i − ζp2D,v) + (rhsn2D-1D)αn

1D=1,βn
1D=0 . (6.286)

The extended coupling obtained upon combining (6.285) and the second difference of (6.286)
(minus two times (6.286) at j plus (6.286) at j − 1 and j + 1) reads:

αn
1Dζ

p+1
1D,j − βn

1D
∆t

∆xCFL22D,x
qp+1

1D-2D,j − δn1D(ζ
p+1
1D,j−1 − 2ζp+1

1D,j + ζp+1
1D,j+1)

= αn
1D

ζp2D,i,j + ζp2D,v,j

2
+ (βn

1D − αn
1Db

′
I

)
(ζp2D,i,j − ζp2D,v,j)

− δn1D

(
(ζp2D,i,j−1 + ζp2D,v,j−1)/2− (ζp2D,i,j + ζp2D,v,j) + (ζp2D,i,j+1 + ζp2D,v,j+1)/2

+ b′I
(
ζp2D,v,j−1 − ζp2D,i,j−1 − 2(ζp2D,v,j − ζp2D,i,j) + ζp2D,v,j+1 − ζp2D,i,j+1

))
+ rhsn2D-1D,j − δn1D(rhsn2D-1D,j−1 − 2rhsn2D-1D,j + rhsn2D-1D,j+1)αn

1D=1,βn
1D=0 .

(6.287)

Note again the dependence of the rhsn2D-1D on αn
1D and βn

1D.

Equation (6.287) has only a single unknown qp+1
1D-2D in its left-hand side. This makes it rel-

atively easy to combine it with the ζp+1 equations (6.291) to be solved in 1D domains. By
combining both equations such that qp+1

1D-2D in the former and single variable qp+1
c in the latter

cancel (using qc = −q1D-2D), a system of equation in only the ζp+1
1D,j is obtained that has the

same tridiagonal structure as (6.291). Implementation of (6.287) should therefore be feasible.
It is for this reason that we have considered (6.286) for the extension of (6.285). Similar to
the coupling from 1D to 2D, parameter δn1D and accompanying terms have been introduced in
(6.287) to investigate the gain in performance that may be obtained with this extension of cou-
pling (6.285) from 2D to 1D, with the intention to figure out if implementation of it (somewhere
in the future) may be worth considering. NB, the combination of (6.285) with the second dif-
ference of (6.285) for two different values of βn

1D (i.e., βn
1D = 0 and a value βn

1D ̸= 0) will
not be considered. Although in principle possible, with an extension based on βn

1D ̸= 0 we
would get in the left-hand side of (6.287) three coupled qp+1

1D-2D at the indices j − 1, j and
j + 1 that cannot be easily eliminated from the equations. This would destroy the tridiagonal
structure of the systems of equations to be solved in 1D domains. Only the combination of
(6.285) with the second difference of (6.285) for αn

1D = 1 and βn
1D = 0, i.e., with the second

difference of (6.286), is feasible enough to consider for implementation. NB, a proper choice
of the coupling parameters βn

1D and δn1D (taking αn
1D = 1) is required to ensure the positive

definiteness of the systems of equations.

122 of 207 Deltares



DRAF
T

Numerical approach

6.7.8.4.2 Normal-mode analysis

Because of the simplifications introduced (straight 1D-2D interface, uniform depths, rectangu-
lar domains, uniform grids, cf. the beginning of Section 6.7.8.4.1) and ignoring the effect of the
conditions (far) upstream and downstream along the 1D-2D interface, the solution in the direc-
tion tangential to the 1D-2D interface can be expanded in linearly independent Fourier modes.
For the convergence analysis and the subsequent optimization of the coupling parameters, it
is convenient to consider the (convergence) errors per time step ∆ζp+1

j = ζn+1
j − ζp+1

j

(in 1D) and ∆ζp+1
i,j = ζn+1

i,j − ζp+1
i,j (in 2D), and to expand them in Fourier modes. So we

consider convergence-error modes of the form:

∆ζp+1
j = ∆Zp+1

1D,k exp
(
ikyj

)
, (6.288a)

∆ζp+1
i,j = ∆Zp+1

2D,kλ
i
k exp

(
ikyj

)
, (6.288b)

with ∆Zp+1
1D,k and ∆Zp+1

2D,k the amplitude of the mode with tangential wave number k (0 ≤
k∆y ≤ π) at iteration level p in respectively the 1D domain and the 2D domain, with
exp(ikyj) the behavior of the modes in the direction tangential to the 1D-2D interface (in
1D and 2D the same, and assumed to be periodic), and with λi

k the exponential behavior of
the error mode in 2D normal to the 1D-2D interface. The 1D error mode is uniform in that
direction, since the solution in 1D channels has been assumed uniform in crosswise direction.

Note that the i inside the exp functions in (6.288) denotes the unit imaginary number
√
−1

in the description of the oscillatory Fourier modes. The other occurrences of i (in (6.288b)
only) denote the index in x–direction (the direction normal to the 1D-2D interface) of the cell
centers, with superscript i in λi

k the power in the exponential amplitude behavior of ∆ζp+1
i,j

normal to the interface.

It is easy to verify that, since ζn+1
j and ζn+1

i,j (and qn+1
1D-2D,j) are the converged solution of the

equations (6.274), (6.276), (6.280) (or (6.282), or (6.283)) and (6.285) (or (6.287)), ∆ζp+1
j

and ∆ζp+1
i,j (and ∆qp+1

1D-2D,j = qn+1
1D-2D,j − qp+1

1D-2D,j) satisfy the homogeneous version of these
equations. The homogeneous equations are obtained by omitting all terms at the previous
time level n, i.e., rhsn1D,j , rhsn2D,i,j , rhsn1D-2D and rhsn2D-1D.

The first step in the analysis is the determination of the normal-mode convergence-error be-
havior in the 2D domain (no normal mode in the 1D domain where the convergence error
normal to a 1D-2D interface is uniform). Inserting (6.288b) in the homogenized (6.276), we
obtain for the 2D domain the quadratic equation:

1 + 2CFL22D,x + 4 sin2(k∆y/2)CFL22D,y − CFL22D,x

(
λ−1
k + λk

)
= 0 ,

whose two solutions are:

λ±k = 1/(2CFL22D,x) + Γ + 1±
√(

1/(2CFL22D,x) + Γ
)(
1/(2CFL22D,x) + Γ + 2

)
≈ 1

CFL±2
2D,x

exp
(
± 2CFL22D,x ± 4 sin2(k∆y/2)CFL22D,y

)
,

(6.289)

with Γ = 2 sin2(k∆y/2)CFL22D,y/CFL22D,x. The approximate expansion in the second line
is valid for small CFL22D,x and CFL22D,y, when terms of O(CFL42D,x), O(CFL22D,xCFL22D,y)

and O(CFL42D,y) can be neglected. Note that for small k we can apply sin2(k∆y/2) ≈
(k∆y)2/4, neglecting terms of O((k∆y)4).
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The two solutions (6.289) describe the behavior in x–direction of two modes ∆ζp+1
i,j per

Fourier mode k that roughly speaking correspond with a left-going and a right-going error
wave in the 2D domain. Because of the symmetry of (6.276) we have that these modes are
the inverse of each other, i.e., we have λ−kλ+k = 1.

The larger CFL2D,x, i.e., the larger the non-dimensional time step, the closer λ−k and λ+k are
to 1 and the larger the penetration distance into the domain, while the larger k, i.e., the larger
the non-dimensional angle of the error wave with respect to the normal direction, the more
that penetration is tangential to the boundary. This behavior is recognized in Figure 6.15
that shows the normalized normal behavior of the two modes ∆ζp+1

i,j per wave number k
(right-going mode λ−k and left-going mode λ+k) for a number of combinations of CFL2D =
CFL2D,x = CFL2D,y and k∆y.

Figure 6.15: Behavior of normal-mode solutions of (6.276) for 3 different tangential
modes k∆y (solid, dashed and dotted lines) and 3 different values of
CFL2D = CFL2D,x = CFL2D,y (red, blue and green lines).

For 4 sin2(k∆y/2)CFL22D,y ≪ 1 and CFL2D,x ≫ 1, expression (6.289) can be approxi-
mated by λ±k ≈ 1 ± 1/CFL2D,x, from which we obtain ln(λ±k) ≈ ±1/CFL2D,x. This
shows in particular that for the constant mode tangential to a 1D-2D interface (k∆y = 0) the
exponential decay or increase in normal direction per grid cell ln(λ±k) is about inversely pro-
portional to CFL2D,x and hence can be rather small, as can also be observed in Figure 6.15:
the larger CFL2D,x, the further a constant tangential-mode perturbation (convergence error)
at a 1D-2D interface (which is a boundary for the 2D domain) penetrates into the 2D domain.
The situation is completely different for the shortest (wiggle) mode k∆y = π along the 1D-
2D interface. Assuming equal CFL2D,x and CFL2D,y for the moment, we then have Γ = 2

and hence λ±k ≈ 3 ± 2
√
2 for CFL2D,x sufficiently larger than 1. In fact, for k∆y = π we

have for all CFL2D,y = CFL2D,x > 1 the large exponential decay or increase per grid cell
ln(λ±k) ≈ ln(3 ± 2

√
2) = ±1.763. In other words, for the wiggle mode tangential to a

1D-2D interface (k = π) the exponential decay or increase per grid cell ln(λ) is large and
virtually independent of CFL2D,x, cf. Figure 6.15.

The large range in normal-mode behavior for large CFL2D,x complicates the optimization of
the interface coupling for maximum convergence speed, but also makes this optimization
important.

We will now assume that the optimization of the coupling at a 1D-2D interface can be consid-
ered as a problem that is independent of the coupling optimization at other interfaces. This
assumption is obviously not true, but is expected to hold reasonably well. The reason for this
is the exponential normal-mode decay. Figure 6.15 shows that when there are 20 grid cells
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between the 1D-2D interfaces present at both sides of a 2D domain, the effect of the solution
at one interface on the solution at the other is less than 50% at a CFL2D value as high as 25.
The effect that the presence of an opposite interface at a distance of 20 grid cells has on the
behavior of the coupling at a 1D-2D interface has twice that attenuation factor, i.e., it has an
effect of about 20% at CFL2D = 25. Since 20 2D grid cells between 1D-2D interfaces is not
a large number, but especially because in practice CFL2D will usually be (much) smaller than
25, the mutual influence between 1D-2D interfaces will generally be small.

Figure 6.16: The proposed 1D-2D modeling with horizontal coupling.

An important exception is the situation that occurs when 1D channels are close together,
such as in a braided river system as illustrated in Figure 6.16. The narrow 2D areas that
are in between 1D channels may in that case be only a few grid cells wide. Also near nodes
connecting branches at different angles there may be a mutual influence of the coupling at
different 1D-2D interfaces. Because of the complexity of this problem it is not feasible to
include the interdependence of couplings at different 1D-2D interfaces in the optimization, so
this aspect will be ignored. Likewise, because of the simplifications introduced, the effect
of (strongly) curved 1D-2D interfaces, non-uniform depths, varying grid sizes, varying 1D
channel widths, and varying friction coefficients will be ignored.

Concerning the optimization strategy we first notice that, because 1D solutions are uniform
in crosswise direction, all 1D normal convergence-error modes are constant. See also ex-
pression (6.288a) that is independent of x, hence constant in x–direction. As a result, 1D
convergence-error modes are ‘global’, in the sense that they depend equally on the conver-
gence error at the 1D-2D interface at either side of the 1D channel. This creates an interde-
pendency between the 1D-2D couplings at each of the two lateral boundaries of a 1D channel.
Insight in the strength of that interdependency can be obtained from a normal-mode analysis
where the 1D-2D couplings at both lateral boundaries of a 1D channel are considered simulta-
neously. Pending such an analysis, it is presently not known how strong that interdependency
is. To be on the safe side, we will assume that its strength is such that it hampers a local
optimization of the coupling, which implies that a local optimization of the 1D-2D coupling is
not well possible by considering the Fourier modes in the 1D domain.

In contrast to the 1D domains, the 2D domains have normal modes that decay exponentially
with the distance from the boundaries, cf. (6.288b), (6.289), and Figure 6.15. Assuming that
this decay is large enough10, the solution imposed at a boundary will within one time step
hardly affect the solution at the opposity boundary. That solution is a specific combination of
water level ζ and flow velocity u or, equivalently (sub discretized ), a combination of ζ and its
first normal derivative.

10This requires a sufficiently large number of grid cells across the width of a 2D domain and a sufficiently small
CFL number, cf. figure 6.15.
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6.7.8.5 Properties of the horizontal 1D-2D coupling

Expected properties of the proposed 1D-2D coupling:

⋄ Works well for sufficiently small Courant number CFL or sufficiently wide 2D areas in
between the 1D channel sections, hence may not work that well if large CFL and narrow
2D areas (as in between two parallel 1D channels that are close together, cf. Figure 6.16).

⋄ Large CFL may be a problem because then large spreading in exponential behavior of nor-
mal modes, cf. Figure 6.15, while the optimization of the coupling is for a single ‘average’
mode. In consequence, the optimization is not optimal for the full range of modes.
NB, a better optimization for the full range of modes requires consideration of the proposed
extended couplings.
IMPORTANT: large CFL are in particular a problem when the 1D grids and the 2D grids are
conformal, i.e., match along an interface (the 1D and 2D grid size in tangential direction
along the 1D-2D interfaces are equal). This is the current restriction; the coupling will first
be developed with this grid restriction. Required is a coupling for 1D and 2D models as
they are used in practice, where the grid size applied in the 1D channels is usually (much)
larger than the grid size applied in the 2D areas. This (strongly) reduces the number of
relevant Fourier modes, hence the spreading in normal-mode exponential behavior, and
therefore improves the applicability of the applied single-mode optimization of the 1D-2D
coupling. This is something to take into account when testing the coupling for the current
conformal-grid limitation.

⋄ Optimization of the coupling is based on the assumption of constant coefficients and
straight 1D-2D interfaces, hence may not work that well if, e.g., large variation in 2D depth
or 2D friction coefficient along an interface, if large curvature of a 1D-2D interface, if cor-
ners in an interface at intersections of 1D channel sections, ...
The optimization of the 1D-2D coupling should be insensitive to the parameters related to
the 1D channels, i.e., the (variation in) width and the 1D CFL number. On the other hand,
its performance does depend on these parameters.

6.7.8.6 Implementation of the 1D–to–2D coupling into the 2D system of equations

Rewrite (6.267) as:

bn2D,vζ
p+1
2D,v + bn2D,iζ

p+1
2D,i = dp2D , (6.290)

with

bn2D,v =
αn

2D

2
+ (βn

2D + αn
2Df

n
I F

n
I ) ,

bn2D,i =
αn

2D

2
− (βn

2D + αn
2Df

n
I F

n
I ) ,

dp2D = αn
2Dζ

p
1D + βn

2D
∆xI

θAn
IF

n
I

qp1D-2D

+ αn
2Dsc,I

(
fn
I R

n
I −

∆x1D-2D

αSFg∆t
u2D,In

)
+ βn

2D
sc,I
θF n

I

(
θRn

I + (1− θ)u2D,In
)
.

In general we have for each control volume the equation (cf. (MB-10)):(Sp
ζ

∆t
+
∑

cell faces

An
f θF

n
u

)
ζp+1
c −

∑
cell faces

An
f θF

n
u ζ

p+1
a −Qp

lat,c

=
Sp
ζ ζ

p
c − V p

c

∆t
+

V n
c

∆t
−
∑

cell faces

sc,fA
n
f (1− θ)un

f −
∑

cell faces

sc,fA
n
f θR

n
u ,

(6.291)
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with Qlat,c the discharge into the grid cell.

Rewrite (6.291) as:(Sp
ζ

∆t
+ bbnc

)
ζp+1
c +

∑
cell faces

ccnc,fζ
p+1
a −Qp

lat,c =
Sp
ζ ζ

p
c − V p

c

∆t
+

V n
c

∆t
+ ddnc , (6.292)

with:

bbnc =
∑

cell faces

θAn
f F

n
u ,

ccnc,f = −θAn
f F

n
u ,

ddnc = −
∑

cell faces

sc,f
(
θAn

f R
n
u + (1− θ)Qn

f

)
.

(6.293)

The coefficients (6.305) are used for the 1D parts and 2D parts in D-Flow FM to define the
system of equations.

Equation (6.290) yields:

ζp+1
2D,v =

dp2D

bn2D,v
−

bn2D,i

bn2D,v
ζp+1

2D,i (6.294)

(Sp
ζ

∆t
+ bbnc

)
ζp+1
c +

∑
internal cell faces

ccnc,fζ
p+1
a + ccncfIζ

p+1
2D,v −Qp+1

lat,c =

Sp
ζ ζ

p
c − V p

c

∆t
+

V n
c

∆t
+ ddnc ,

(6.295)

Substituting (2.13) into (2.14) results in:

(Sp
ζ

∆t
+ bbnc

)
ζp+1
c +

∑
internal cell faces

ccnc,fζ
p+1
a + ccncfI

(
dp2D

bn2D,v
−

bn2D,i

bn2D,v
ζp+1

2D,i

)
−Qp+1

lat,c =

Sp
ζ ζ

p
c − V p

c

∆t
+

V n
c

∆t
+ ddnc ,

(6.296)

(Sp
ζ

∆t
+ bbnc − ccncfI

bn2D,i

bn2D,v

)
ζp+1
c +

∑
internal cell faces

ccnc,fζ
p+1
a −Qp+1

lat,c =

Sp
ζ ζ

p
c − V p

c

∆t
+

V n
c

∆t
+ ddnc − ccncfI

dp2D

bn2D,v
,

(6.297)
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6.7.8.7 Implementation of the 2D–to–1D coupling into the 1D system of equations

(6.270) is rewritten as:

bn1D,sζ
p+1
1D + bn1D,QQ

p+1
1D-2D = dp1D ,

with

bn1D,s = αn
1D ,

bn1D,Q = −βn
1D

1

θAn
IF

n
I

,

dp1D = αn
1D

ζp2D,i + ζp2D,v

2
+ (βn

1D − αn
1Df

n
I F

n
I )(ζ

p
2D,i − ζp2D,v)

− αn
1Dsc,I

(
fn
I R

n
I −

∆x1D-2D

αSFg∆t
u2D,In

)
+ βn

1D
sc,I
θF n

I

(
θRn

I + (1− θ)u2D,In
)
,

which results in:

Qp+1
1D-2D = −

bn1D,s

bn1D,Q

ζp+1
1D +

dp1D

bn1D,Q

, (6.298)

Or:

Qp+1
1D-2D = Qn

zeta,1d2dζ
p+1
1D +Qp

lat,1d2d , (6.299)

With:

Qn
zeta,1D2D = −

bn1D,s

bn1D,Q

Qp
lat,1D2D =

dp1D

bn1D,Q

(6.300)

where −Qp+1
1D-2D = −∆xIq

p+1
1D-2D (notice the minus signs) is the lateral discharge into the 1D

cell over the current time step.

Substituting (6.299) into (6.292) results in:

bbnc,1D,I = −
bn1D,s

bn1D,Q

+
∑

cell faces

θAn
f F

n
u ,

ccnc,1D,I = −θAn
f F

n
u ,

ddpc,1D,I = − dp1D

bn1D,Q

−
∑

cell faces

sc,f
(
θAn

f R
n
u + (1− θ)Qn

f

)
.

(6.301)

Notice that ccnc,1D,I = ccnc,f , i.e., this coefficient remains unchanged.
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6.7.8.8 Incorporation of the 1d2d lateral coupling in D-Flow FM

A simple 1D channel results in this system of equations:

b1 c1,2

c1,2 b2 c2,3

c2,3 b3 c3,4

c3,4
. . . . . .
. . . bn−2 cn−2,n−1

cn−2,n−1 bn−1 cn−1,n

cn−1,n bn


•



ζ1

ζ2

ζ3
...

ζn−2

ζn−1

ζn


=



d1

d2

d3
...

dn−2

d̃n−1

dn


(6.302)

From equation 6.292, the matrix coefficients for a certain cell c result in:

bc =
Sp
ζ

∆t
+ bbnc

cc,j = ccnc,f

dc =
Sp
ζ ζ

p
c − V p

c

∆t
+

V n
c

∆t
+ ddnc +Qp

lat,c

(6.303)

Now suppose a 1d2d link is located between 1D cell c1D and 2D cell c2D, the matrix coeffi-
cients become:

bc1D =
Sp
ζ

∆t
+ bbnc1D − θAn

c1d,c2d
F n
c1d,c2d

+Qn
zeta,1D2D

bc2D =
Sp
ζ

∆t
+ bbnc2D − θAn

c1d,c2d
F n
c1d,c2d

bn2D,i

bn2D,v

cc1d,c2d = 0

dc1D =
Sp
ζ ζ

p
c − V p

c

∆t
+

V n
c

∆t
+ ddnc1D +Qp+1

lat,c1D
−Qp

lat,1d2d

dc2D =
Sp
ζ ζ

p
c − V p

c

∆t
+

V n
c

∆t
+ ddnc2D +Qp+1

lat,c2D
− sc,f

(
θAn

c1d,c2d
Rn

c1d,c2d
+ (1− θ)Qn

c1d,c2d

)
(6.304)

bbnc =
∑

cell faces

θAn
f F

n
u ,

ccnc,f = −θAn
f F

n
u ,

ddnc = −
∑

cell faces

sc,f
(
θAn

f R
n
u + (1− θ)Qn

f

)
.

(6.305)

ζp+1
2D,v =

dp2D

bn2D,v
−

bn2D,i

bn2D,v
ζp+1

2D,i (6.306)
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6.8 Hydraulic structures

The main formulations describing how hydraulic structures are handled by D-Flow FM, can
be found in the chapter on Hydraulic structures of Deltares (2024a). There, also the different
flow conditions, that can occur at a structure, are listed and the algorithm, how D-Flow FM
determines which of these flow conditions applies, is described, see Figure 6.17. In this
section, we restrict ourselves to the description of the specific numerical treatment of the
structure formulation at a flow link that contains the structure.

Figure 6.17: Schematic view of the different flow conditions that can occur at a (general)
hydraulic structure.

6.8.1 Notation

Section 6.8 uses the following notation:

Parameter Description Unit

h, ζ water level [m]

Q discharge [m3/s]

u velocity [m/s]

µ contraction coefficient [-]

Af cross-sectional flow area of the structure [m2]

∆t time step [s]

∆x length of the structure [m]

with the following indices, indicating the spatial positioning and time/iteration levels in the
discretizations:
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Index Description

i flow cell / water level point

i+ 1
2

flow link / velocity point

n time step number

m iteration step number

1 flow cell / water level point to the left of a hydraulic structure

2 flow cell / water level point to the right of a hydraulic structure

6.8.2 Culvert formulation

6.8.2.1 Introduction

The steady-state modeling of the flow through culverts consists of the steady-state continuity
equation:

Q2 = Q1 , (6.307)

and a steady-state ‘momentum’ equation, i.e., a structure equation modeling the energy loss
across the structure, cf. Section 14.2.6 in Delft1D2D UM (2002):

Q1 =



0 if ζ1 ≤ max(zc1, zc2)

and ζ2 ≤ max(zc1, zc2) ,

µAfc

√
2g(ζ1 − (zc2 + hc2)) if ζ1 > max(zc1, zc2 + hc2)

and zc2 < ζ2 < zc2 + hc2 ,

µAfc

√
2g(ζ1 − ζ2) if ζ1 > max(zc1, ζ2)

and ζ2 ≥ zc2 + hc2 ,

−µAfc

√
2g(ζ2 − (zc1 + hc1)) if ζ2 > max(zc2, zc1 + hc1)

and zc1 < ζ1 < zc1 + hc1 ,

−µAfc

√
2g(ζ2 − ζ1) if ζ2 > max(zc2, ζ1)

and ζ1 ≥ zc1 + hc1 ,

(6.308)

with 1 and 2 the location left and right of the culvert, cf. Figure ??, with µ the discharge
coefficient [−], and with Afc the discharge culvert area [m2].

ζ1

ζ2

zc2

zc1

L

Figure 6.18: Side view of a culvert

The second and fourth line in (6.308) specify the modeling of free flow when a free-flow
condition applies and the flow is from location 1 to location 2 or opposite. The third and fifth
line pertain to the submerged flow regime.
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It is clear that culvert formulation (6.308) is a continuous function of ζ1 and ζ2, also at the
water levels where the flow throught the culvert changes regime or direction.

Requirement for this formulation to be also a continuously differentiable function of ζ1 and ζ2,
is the differentiability at regime changes. This requires that these changes occur at critical
conditions downstream. In the case of flow from 1 to 2 (likewise for flow in the other direction):

u2

c2
=

u2√
ghc2

= 1 → hc2 =
(u2)

2

g
,

or, equivalently:

Q/A2√
gA2/T2

= 1 → hc2 =

(
Q2

g(T2)2

)1/3
, (6.309)

with all variables at location 2 of the culvert.

In the first equation of (6.309) depth-dependent flow area A2 = A2(ζ2) is replaced by depth-
dependent surface width T2 = T2(ζ2) times effective depth hc2 = A2/T2 to obtain the
expression for hc2 in the second equation. This expression is equal to the one given in Sec-
tion 14.2.6 of Delft1D2D UM (2002).

When culvert width T2 varies over the depth, (6.309) becomes fully nonlinear and requires an
iterative solution method. Upon inspection of function GetCriticalDepth in
CrossSections.f90 it was found that this is taken care of in the code.
Function GetCriticalDepth solves the first equation in (6.309) rewritten as:

Q2T2 − (A2)
3g = 0 , (6.310)

for the unknown hc2 = ζ2 − zc2, with T2 = T2(ζ2) and A2 = A2(ζ2) both functions of ζ2
and hence of hc2.

At present, equation (6.310) is solved in function GetCriticalDepth by means of the
very robust but not very fast bisection method11, using a convergence criterion not properly
scaled with a local length scale.

6.8.2.2 Addition of time derivative

Because of the applied staggering, there are two water levels per structure (one left and one
right) but only one velocity per structure i.e., the discharge through a structure depends on the
flow area with which this velocity is multiplied. For the flow area the water depth is calculated
by taking the upstream water level and the highest invert level of the culvert. This water depth
is then used to calculate the flow area of the culvert.

That discharge also appears in the discretizations of the continuity equation left and right of
the structure, which therefore by definition cover a part of the structure12. Because of the

11Besides being one of the slowest converging iterative solution methods, the applied bisection method is also
slow because for every culvert in the model it is reinitialized each time step. A Newton method would converge
much faster and would in addition make it easy to start from the previous solution, speeding up convergence even
more. If the current iterative solution method of (6.310) tends to take a substantial amount of computational time
in simulations with a relatively large number of culverts (to be investigated), then it is advisable to consider the use
of a Newton-type method designed/adapted for guaranteed robustness.

12Together, they cover the entire structure, since the discharge defined somewhere inside the structure appears
both as mass flux in the discretization of the continuity equation left and as mass flux in its discretization right.
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time derivative included in the continuity equation (see Deltares (2024a)), equation (6.307)
is not applied, i.e., is at most only applied by approximation. It is assumed that the mild
time-derivative effect that is present has a favorable effect on stability.

For a physically meaningful addition of a time derivative to (6.308), this equation is refor-
mulated in the form of the (steady-state) momentum equation that it effectively represents.
In fact, structure formulations can be viewed as approximations of the normal momentum
equation across structures integrated over 3D control volumes consisting of the 2DV wetted
cross-sectional area of a structure (or a part of that area in case of a substructure in a com-
pound structure) times its 1DH length. Because of the highly dynamic flow inside structures,
convective, viscous and non-hydrostatic pressure fluxes as well as unsteady flow effects are
inside structures much larger than outside structures. As a result, outside structures, i.e., at
the inflow and outflow boundaries of their 3D control volume, convective, viscous and non-
hydrostatic pressure fluxes as well as unsteady flow effects can be neglected. The only terms
that remain after integration are the overall hydrostatic pressure gradient (water-level gradi-
ent) and the integrated effect of friction and viscous losses, where the latter is modeled based
on some combination of calibrated empirical and physical modeling considerations. In short,
structure formulations are typically of the form:

g(ζ2 − ζ1) = −bstruc|ustruc|ustruc, (6.311)

with ζ1 and ζ2 the water level left and right of the structure, ustruc the (typical, average,
representative) flow velocity in the structure, and bstruc the (integrated, time-averaged) loss
coefficient. At this level we can meaningfully add a time derivative, after which the equation
becomes:

lstruc
dustruc

dt
+ g(ζ2 − ζ1) = −bstruc|ustruc|ustruc, (6.312)

with lstruc representative of the length of the structure, for now the distance between the two
water level points is used.

6.8.2.3 Modified culvert formulation

The CG-based solution algorithm of D-Flow FM requires the systems of equations to be sym-
metric and therefore does not allow the straightforward linearized implicit (i.e., semi-implicit)
implementation of (6.312). In case of submerged flow (third and fifth line in (6.308)) a straight-
forward time discretization can be applied in both flow directions:

lstruc
un
struc − un−1

struc

∆t
+ g(ζn2 − ζn1 ) = −bn−1

struc|un−1
struc|un

struc ,

but free flow (second and fourth line in (6.312)) requires the addition of either∆tg ζ2
dt

or∆tg ζ1
dt

,
thereby introducing a time-step dependent error13. It is assumed that this addition does not
have a destabilizing effect. Although this seems to be plausible, analysis is required to figure
out if this assumption actually holds.

The resolution for this limitation is to approximate the following term:

ζn1 − (zc2 + hc2) ≈ ζn1 − ζn2 + ζn−1
2 − (zc2 + hc2)

(zc1 + hc1)− ζn2 ≈ ζn1 − ζn2 + (zc1 + hc1)− ζn−1
1

(6.313)

13This time-step dependent error behavior of structures has been observed in practice. Because of the severe
time-step stability restriction of D-Flow FM, this error tends to be limited, ‘fortunately’.
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Putting everything together, the modified culvert implementation can be written as:

lstruc
un
struc − un−1

struc

∆t
+ g(ζn2 − ζn1 ) = −bn−1

struc|un−1
struc|un

struc

+ s2g(ζ
n−1
2 − zc2 − hn−1

c2 ) + s1g(zc1 + hn−1
c1 − ζn−1

1 ) ,

(6.314)

with both the switches s1 and s2 equal to zero when the flow through the culvert is submerged,
and with one (and only one) of the switches equal to one when the flow is free. Summarizing
(cf. (6.308), replacing q1 by ustrucAfc):

IF ζn−1
1 ≤ max(zc1, zc2) AND ζn−1

2 ≤ max(zc1, zc2) THEN
! no flow through culvert
un
struc = 0

ELSE IF ζn−1
1 > max(zc1, zc2 + hn−1

c2 ) AND zc2 < ζn−1
2 < zc2 + hn−1

c2 THEN
! free flow from 1 to 2
(6.314) with bn−1

struc = 1/(2(µn−1)2), s1 = 0, and s2 = 1

ELSE IF ζn−1
2 > max(zc2, zc1 + hn−1

c1 ) AND zc1 < ζn−1
1 < zc1 + hn−1

c1 THEN
! free flow from 2 to 1
(6.314) with bn−1

struc = 1/(2(µn−1)2), s1 = 1, and s2 = 0

ELSE
! submerged flow
(6.314) with bn−1

struc = 1/(2(µn−1)2), s1 = 0, and s2 = 0

ENDIF

Note that the flow regime through the culvert at the current time step n is determined by the
solution at the previous time step n− 1. Because of the (very) small time steps typically used
in D-Flow FM applications, this is believed to have a negligible effect on results and on the
stable behavior of structures.

6.8.2.4 Implementation

Rewriting 6.314 into:(
lstruc
∆t

+ bn−1
struc

∣∣un−1
struc

∣∣)un
struc = −g (ζn2 − ζn1 )

+ sg
(
min

(
ζn−1
2 , ζn−1

1

)
− zc2 − hn−1

c2

)
+

lstruc
∆t

un−1
struc (6.315)

Which is equivalent to:

buu
n
struc = −cu (ζ

n
2 − ζn1 ) + du + dlim (6.316)

un
struc = −cu

bu
(ζn2 − ζn1 ) +

du + dlim
bu

(6.317)

with:

bu =
lstruc
∆t

+
1

2(µn−1)2
∣∣un−1

struc

∣∣ (6.318)

cu = g (6.319)

du =
lstruc
∆t

un−1
struc (6.320)

dlim = sg
(
min

(
ζn−1
2 , ζn−1

1

)
− zc2 − hn−1

c2

)
(6.321)
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In terms of fu and ru, where:

un
struc = ru − fu · (ζn+1

2 − ζn+1
1 ) (6.322)

fu =
cu
bu

(6.323)

ru =
du + dlim

bu
(6.324)

6.8.3 Drowned flow, for sluice (gate) or sill (weir)

For drowned flow, the Q-H relationship is (for h1 > h2):

Q = cecwWs(h1 − zs −
u2
s

2g
)
√

2g(h1 − h2) (6.325)

Now define:

Af = Ws

(
h1 − zs −

u2
s

2g

)
(6.326)

µ = cecw (6.327)

u =
Q

Af

(6.328)

After reworking (6.325) to velocity, the relationship becomes:

u2
i+ 1

2
= µ22g (h1 − h2) (6.329)

We now add the term ∂u/∂t and give the structure a fictive length. Furthermore, the factor
u2 is made linear by leaving one u an iteration step behind. This u is determined as follows:

un+1,m−1

i+ 1
2

= cecw

√
2g
(
hn+1,m−1
1 − hn+1,m−1

2

)
(6.330)

This results in the following equation:

un+1
i+ 1

2

− un
i+ 1

2

∆t
+

un+1
i+ 1

2

× un+1,m−1

i+ 1
2

∆x
=

2µ2g

∆x

(
hn+1,m−1
1 − hn+1,m−1

2

)
(6.331)

This equation is reworked to the next general form, which is applied for all structures and also
for the momentum equation:

ui+ 1
2
= fu × (hi − hi+1) + ru (6.332)

Here, ui+ 1
2

, hi and hi+1 are the unknowns and fu and ru are coefficients. These linearized
coefficients fu and ru are:

fu =
2µ2g
∆x

1
∆t

+ un+1,m−1

∆x

(6.333)
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and

ru =
un

∆t
1
∆t

+ un+1,m−1

∆x

(6.334)

This iteration process, in which the coefficients fu and ru are determined, is repeated until
the velocity ui+ 1

2
computed using (6.332) no longer changes.

6.8.4 Free flow, for sluice (gate) or sill (weir)

For free flow, the Q-H relationship is (for h1 > h2):

Q = cecwWs
2

3

√
2

3
g (h1 − zs)

3
2 (6.335)

We define:

Af = Ws
2

3
(h1 − zs) (6.336)

µ = cecw (6.337)

u =
Q

Af

(6.338)

After reworking to velocity, the relationship is

u2 = µ22

3
g (h1 − zs) (6.339)

If we add the term ∂u/∂t and again give the hydraulic structure a fictive length, then after
discretization we get:

un+1,m

i+ 1
2

− un
i+ 1

2

∆t
+

un+1,m

i+ 1
2

× un+1,m−1

i+ 1
2

∆x
=

2
3
µ2g

∆x

(
hn+1,m
1 − zs

)
(6.340)

This equation is not (yet) symmetrical in h. However, the solution algorithm (conjugate gradi-
ents) requires symmetry. This is achieved by writing hn+1

1 − zs as hn+1
1 −hn+1

2 +(hn
2 − zs),

where the explicit part hn
2 − zs is thus moved to the right hand side of the equation. Then the

equation can be reworked to a symmetric term:

un+1,m

i+ 1
2

= fu ×
(
hn+1,m
i − hn+1,m

i+1

)
+ ru (6.341)

Here, ui+ 1
2

,hi and hi+1 are the unknowns and fu and ru are the known variables. The
linearization coefficients fu and ru are:

fu =

2
3
µ2g

∆x
1
∆t

+ un+1,m−1

∆x

(6.342)
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and

ru =
un

∆t
1
∆t

+ un+1,m−1

∆x

+ fu ×
(
hn+1,m−1
2 − zs

)
(6.343)

Where,

un+1,m−1 = µ

√
2

3
g (h1 − zs) (6.344)

Also now, the coefficients fu and ru are determined iteratively, as with drowned flow.

6.9 Nested Newton non linear solver

In Algorithm (24) the method for performing a time step is with the Newton iteration presented.
With the introduction of the Nested Newton iteration this algorithm is changed for 1d models.

Pressurized or partially pressurized flows are often modelled by introducing the so-called
Preismann slot (Preissmann A, 1961). This method has a number of disadvantages. The
main disadvantage is the fact that the iteration process is not guaranteed to converge. As a
result the time step must be limited from time to time.

In Casulli and Stelling (2013) the so-called Nested Newton method is presented. This method
should counteract the disadvantages of the Preismann slot. In the Nested Newton method
a second iteration layer is added to the non-linear iteration, hence the term "nested". In this
method the width of a cross section is split in a non-decreasing part p(xk, z) and a non-
increasing part q(xk, z).

Let w(x, z) be the width of the channel at postion (x, z). The wet cross sectional area AT is
determined by:

AT (x) =

∫ ζ

−∞
w(x, z)dz (6.345)

In applications for open channel flow in general w(x, z) is a non-decreasing function in z. In
urban drainage systems this is not the case. However in all cases it is possible to define two
non-decreasing functions p(x, z) and q(x, z), in such a way that:

w(x, z) = p(x, z)− q(x, z) (6.346)

As a result the cross sectional total area can be written as:

AT (x) =

∫ ζ

−∞
p(x, z)dz −

∫ ζ

−∞
q(x, z)dz (6.347)

The Nested Newton time integration method can be summarized by (an elaborate description
can be found in Algorithm (47)):

1 The index n indicates the time step number.
2 For the outer iteration loop the index m is used and corresponds with ζn+1,m

k .

3 For the inner iteration loop the index p is used and corresponds with ζ
n+1,m(p)
k .
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4 During the inner iteration ζ
n+1,m(p)
k is updated.

5 The area of the cross section is calculated by Algorithm (48). As a result during the p-
iteration the cross sectional width is non-decreasing

6 Once this iteration is converged, ζn+1,m
k is updated.

7 Return to step 4, until also the m-iteration loop is converged.

The non-linear time-step integration is summed up in Algorithm (24). The algorithm for the
Nested Newton time-step integration is summed up in Algorithm (47). The main difference for
this algorithm is the extra iteration loop with index m.

Algorithm 47 Nested Newton: perform a time step

while first iteration or repeat time-step (type 1) do
tn+1 = tn +∆t
compute fu

n
j and ru

n
j with Algorithm (16)

while first iteration or repeat time-step (type 2) do
compute the matrix entries Bn

k , Cn
j and right-hand side dnk in the water level equation

with Algorithm (17)
determine the set of water levels that need to be solved, Algorithm (19)
m = 0
p = 0
ζn+1,m
k = −blk
ζ
n+1,m(p)
k = ζnk
convergedm = false
convergedp = false
while not convergedm do

while not convergedp do
compute the matrix entries Br

n
k , Cr

n
j and right-hand side dr

n
k in the water level

equation with Algorithm (20)
solve the unknown water levels and obtain ζ

n+1,m(p+1)
k , Algorithm (25)

check positivity of water level with Algorithm (21) and repeat time-step if necessary
with modified ∆t (type 1) or hu

n
j (type 2, default)

compute water-column volume V
n+1,m(p+1)
k and wet surface area A

n+1,m(p+1)
k

with Algorithm (48)

convergedp = max
k

∣∣∣ζn+1,m(p+1)
k − ζ

n+1,m(p)
k

∣∣∣ < ε

p = p+ 1
end while
ζn+1,m+1
k = ζ

n+1,m(p)
k

converged = max
k

∣∣ζn+1,m+1
k − ζn+1,m

k

∣∣ < ε

m = m+ 1
end while

end while
end while
ζn+1
k = ζn+1,m

k

compute velocities un+1
j and discharges qn+1

j and qa
n+1
j are defined at the next time level,

Algorithm (23)
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Algorithm 48 Compute cross sectional area

V
n+1,m(p)
k = 0.5

∑
j∈J (k)

ATij
dxj. (6.348)

A
n+1,m(p)
Tij

=

∫ ζ
n+1,m(p)
k

−∞
p(xij, z)dz −

∫ ζ
n+1,m(0)
k

−∞
q(xij, z)dz. (6.349)

A
n+1,m(p)
k = 0.5

∑
j∈J (k)

p(xij, ζ
n+1,m(p)
k )− q(xij, ζ

n+1,m(0)
k ). (6.350)

where xij is located on the cell face j at the side of cell k.

Remark 6.9.1. In contradiction the claim of Casulli and Stelling (2013) an extra slot width was
required in order to stabilize urban models in D-Flow FM.

Remark 6.9.2. The standard settings for the stop criterium for the conjugate gradient solver
is 10−14. The stop criterium for the Newton iteration is 10−8. These two values have to be
different.

Remark 6.9.3. For nonlin1d==3 an improved, slightly different approach is used. In this
case step “ζn+1,m

k = −blk” is skipped, which means that the iteration starts directly at the
most recently calculated water level. Only in case, during the non-linear iteration, a negative
depth at some grid point is computed, the iteration is restarted, using this step. As a result
less iterations are required.
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7 Numerical schemes for three-dimensional flows

7.1 Governing equations

In D-Flow FM transport is formulated as,

d

dt

∫
V (t)

φdV +

∫
∂V (t)

φ (u− v) •n dS =

∫
∂V (t)

(
K∇̃φ

)
•n dS+

∫
V (t)

s dV (7.1)

where V (t) is a three-dimensional control volume, φ is a transport variable, u the flow ve-
locity field, v the velocity of the (vertically) moving control volume, K is a diagonal matrix
K = diag (νH , νH , νV ), ∇̃ is the gradient operator in 3D, with diffusion coefficients and s
a source term. In case of three-dimensional (layer-averaged) flow, with ∆z a layer thickness
from z1 (x, y, t) to z2 (x, y, t), we obtain

∂∆zφ

∂t
+∇ • (∆zuφ) + ωz2 [φ]z=z2

− ωz1 [φ]z=z1
= ∇ • (∆zνH∇φ)

+

[
νV

∂φ

∂z
− νH∇z2 • ∇φ

]
z=z2

−
[
νV

∂φ

∂z
− νH∇z1 • ∇φ

]
z=z1

+∆zs (7.2)

where u and ∇ still the horizontal components are meant, i.e. u = (u, v)T and ∇ =(
∂
∂x
, ∂
∂y

)T
and νV is the vertical diffusion coefficient. Furthermore, ωz1 and ωz2 are the

velocity components normal, relative to the moving z = z1 and z = z2 layer interfaces,
respectively.

The continuity equation is derived by setting φ = 1 and s = 0,

∂∆z

∂t
+∇ • (∆zu) + ωz2 − ωz1 = 0 (7.3)

Summing up all equations along the layers, and setting zero flux condition at the bed and the
free surface, it yields:

∂h

∂t
+∇ • (hu) = hs (7.4)

In a similar way, the horizontal momentum equation can be obtained by setting φ = u. Unlike
the continuity equation, the momentum equation is not integrated over the depth.

∂∆zu

∂t
+∇ • (∆zuu) + ωz2uz2 − ωz1uz1 = ∇ • (∆zνH∇u)

+

[
νV

∂u

∂z
− νH∇z2 • ∇u

]
z2

−
[
νV

∂u

∂z
− νH∇z1 • ∇u

]
z1

+∆zs (7.5)

subtracting Equation (7.3) from Equation (7.5) yields,

∂u

∂t
+ 1

∆z
[∇ • (∆zuu)−∇ • (∆zu)−∇ • (∆zνH∇u)]

+ 1
∆z

[ωz2 (uz2 − u)− ωz1 (uz1 − u)] =

+ 1
∆z

[
νV

∂u
∂z

− νH∇z2 • ∇u
]
z2
− 1

∆z

[
νV

∂u
∂z

− νH∇z1 • ∇u
]
z1
+ s (7.6)

The last term in the right-hand side of Equation (7.6) includes the source terms, namely
pressure. It can be described by s = sp. The pressure term is imposed on all flow cells as

sp = −g
∂ζ

∂x
(7.7)
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The bed friction acts as surface force and it affects the flow in the first layer close to the bed.

νV
∂u

∂z

∣∣∣∣
z=0

=
τb
ρ

(7.8)

The wind force also acts as a surface force on the free surface, and hence it affects the top
layer of the flow.

νV
∂u

∂z

∣∣∣∣
z=zmax

= Cd
ρa
ρw

W 2 (7.9)

where W is the speed of the wind, ρa is the air density, ρw is the density of water and Cd is
air-water friction coefficient.

7.2 Three-dimensional layers

In D-Flow FM two type of grid topologies in the vertical direction are applied, σ and z grids. σ-
layers are layers which divide the computational regions between the bed and the free surface.
These layers are adaptive and the interfaces of the layers may change in time associates with
the deformation of the bed and free surface, see Figure 7.1a.

x

z

σ = 0

σ = 1

(a) σ-layers

x

z

(b) z-layers

Figure 7.1: A schematic view of σ- and z-layers.

Unlike the σ-layers, z-layers are strictly horizontal and they don’t adapt the temporal variation
of the bed and free surface, see Figure 7.1b.

7.2.1 σ-layers

In σ-grid the vertical distribution of the grid form layers which can adapt to the geometry
of the bed and free surface. In D-Flow FM the thickness of sigma-layers can be uniform
(equidistant in the vertical direction), user specified, or stretched around a user defined level
γ with stretching factor of α (Algorithm (49)). For stretching around a user defined level,
Equation (7.10) and Equation (7.11) are applied for both bottom and top parts.

Algorithm 49 flow_allocflow:

∆zi,1 =


user specified, stretching type = 1, i = 1
1−αi

1−αm
i
× γ, stretching type = 2, i = 1, 2

1
m
, otherwise i = 1

(7.10)

∆zi,k =


user specified, stretching type = 1, i = 1

∆zi,k−1 × αi, stretching type = 2, i = 1, 2

∆zi,k−1, otherwise, i = 1

(7.11)
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7.2.2 z-layers

7.3 Connectivity

In D-Flow FM the horizontal connectivity of the computational cells in three-dimensional are
defined identical with that of the 2D case.

z

y

x
i

j

l

Vk,l

Ak

∆zi,l

Figure 7.2: Layer distribution in 3D.
Ak, projected area of cell k.
Vk,l, volume in layer l of cell k.
∆zi,l thickness of layer l above node i.

However, in order to take the vertical distribution into account, a structured type of bookkeep-
ing is applied. The data is stored in a one-dimensional array, and for each base node (2D
flow node on the bed), two pointers are defined associated to the bottom and top cells in the
vertical direction, defined by Kb(k) and Kt(k), respectively. A similar type of connectivity
is applied to the flow links in the vertical direction. Each base link (2D flow link on the bed),
similar to flow nodes, consists of two pointers associated to the links in the bottom and top
levels in the vertical direction, defined by Lb(j) and Lt(j).

The connectivity translates directly to the administration in the D-Flow FM code as follows:

Kb(k): kbot(k),

Kt(k): ktop(k),

Lb(j): Lbot(j),

Lt(j): Ltop(j),

where j is the link index for the base flow nodes k.

Note: In D-Flow FM the layers are defined using a one-dimensional array. For each cell
column the layers range from Kb(k) to Kt(k) and for each flow-link column they range from
Lb(j) to Lt(j). For clarity, we present it here using two-dimensional indices at which the first
index specifies the base cell k (or flow link j) and the second index specifies the layer number
l.

7.4 Spatial discretization
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Algorithm 50 sethu: compute the layer depths at flow-link location j

zuj,l =

{
zL(j),l, uj,l > 0 ∨ uj,l = 0 ∧ ζL(j) > ζR(j)

zR(j),l, uj,l < 0 ∨ uj,l = 0 ∧ ζL(j) ≤ ζR(j)

σ =
zuj,l − zuj,0

zuj,M(j) − zuj,0

h̃uj,l
=σhuj

Auj,l =
(
h̃uj,l

− h̃uj,l−1

)
wuj

7.4.1 Continuity equation

The continuity equation Equation (7.4) is spatially discretized on the water column as

dVk

dt
= −

∑
j∈J (k)

M(j)∑
l=1

Auj,luj,lsj,k (7.12)

where M(j) is the maximum layers number at the location of link j, Vk is the volume of water
column for base cell k computed with Algorithm (22), Auj,l approximates the flow area of face
j at layer l computed with Algorithm (5), uj,l is the normal velocity component associated to
face (j, l) and sj,k accounts for the orientation of face j with respect to cell k.

Face based layer depth

The face-based layer depths reconstructed from the cell-centered layer depths with an up-
wind approximation. The face-based layer depth, h̃u, is then applied to calculate the cross-
sectional area, Auj,l at layer j (see Algorithm (50)).

7.4.2 Momentum equation

7.4.2.1 Advection and diffusion

Unlike the two-dimensional case, the discretization of the momentum equation in 3D occurs
on all flow faces associated with the layers (horizontally). However, the discretization of the
advection and diffusion terms are identical with that of the two-dimensional case, except it is
applied along the layers. Hence, the advection and diffusion terms can be expressed by

advec =
1

∆z

[
∇ • (∆zuu)− u∇ • (∆zu)−∇ • (ν∆z(∇u+∇uT))

]
j,l

• nj

≈ Aij,luj,l +Aej,l (7.13)

where Aij,l and Aej,l are the implicit and explicit parts, respectively. Because of similarity
with the two-dimensional case, the derivation of the equations is not discussed here. The
advection term is discretized in Algorithm (6) and the diffusion term in Algorithm (13) for each
layer. Similar to the two-dimensional case, the limiters, used for the advection, is described in
Algorithm (11) and Algorithm (12) on each layer.

7.4.2.2 Pressure term

The water level-gradient term projected in the face-normal direction is discretized along the
water column as

∇ζ|j • nj ≈
g

∆xj

(
ζR(j) − ζL(j)

)
(7.14)
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7.4.2.3 Bed friction

The contribution of the bed friction term into the momentum equation occurs only on the flow
faces associated with the first σ-layer. However, unlike the 2D case, this term is not discretized
in its original form. The discretization of this term is done by fitting a logarithmic-law for rough
beds. The merely of this approach is in finding the shear velocity by means of integration of
the log-law wall function. The log-law wall-function for rough beds reads

U

u∗ ≈ 1

κ
ln

(
z + µz0

z0

)
(7.15)

where κ is the Von Kármán constant, z0 is the roughness height and µ is a constant equal to
1 or 9. Averaging by integration of Equation (7.15) for the first layer at flow link j gives

Uj,1 =
u∗
j

κ

[(
1 + µ

z0
∆zuj,1

)
ln

(
∆zuj,1 + µz0

z0

)
− z0

∆zuj,1
µ ln(µ)− 1

]
(7.16)

Considering z0/∆zuj,1 to be small, the bed shear velocity will be

Uj,1 ≈
u∗

κ
ln

(
∆zuj,1 + µz0

ez0

)
(7.17)

Then the shear velocity is derived as

u∗
j =

κ

ln
(

∆zuj,1+µz0
ez0

)Uj,1 = Uj,1
√
cf (7.18)

Where Uj,1 is the magnitude of the velocity vector. The bed shear stress is defined as τb =
ρu∗2. However, different forms of log-law functions are used in D-Flow FM, with a default
option of m = 1. The calculation of the bed shear stress is given in Algorithm (51).

Remark 7.4.1. The log-law wall function is valid for fully developed flow. The bed shear stress
under fully developed flow is lower than that of non-developed flow. Therefore, Equation (7.18)
underestimates the bed friction for unsteady flows.

7.4.2.4 Trachytopes

Trachytopes implement many different formulas for bed roughness and flow resistance. Most
of the formulations are independent of 3D simulation quantities and result in a Chézy C or
Nikuradse kN bed roughness parameter. These parameters can be combined based on the
relative contribution of each trachytope class to the area associated with the velocity point;
the processing of the bed roughness is independent of the dimensionality of the simulation
(2D and 3D) and hence works the same in both cases. The resulting bed roughness will be
applied as described in the previous section.

What are the exceptions, i.e. for which trachytope formulas is something special needed in
3D?

1 The alluvial roughness formulas of Van Rijn (103) and Struiksma (104) depend on the
effective depth-averaged flow velocity. In 2D models this will be equal to the flow velocity,
and in 3D this value will be derived from the near-bed velocity.

2 The second implementation of the Baptist vegetation formula (154) splits its effect over
the bed roughness term and a flow resistance term (this approach is copied to a number
of undocumented trachytope formulas related to vegetation still under development).
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Algorithm 51 getustbcfuhi: compute the bed shear stress for the first σ-layer

S = ln

(
∆zuj,1/2 + µz0

z0

)
, m = 0

S = ln

(
∆zuj,1 + µz0

ez0

)
, m = 1

S = ln

(
∆zuj,1/e+ µz0

z0

)
, m = 2

S = ln

(
∆zuj,1/2 + z0

z0

)
, m = 3

S = ln

(
∆zuj,1/e+ αµz0

z0

)
, m = 4

S =

(
1 + µ

z0
∆zuj,1

)
ln

(
∆zuj,1 + µz0

z0

)
− z0

∆zuj,1
µ ln(µ)− 1 , m = 5

√
cf =

κ

S

Uj,1 =
√

u2
j,1 + v2j,1

u∗
j = Uj,1

√
cf

The velocity effect and the vegetation resistance term have not yet been properly validated in
3D. As long as trachytope formulas 103, 104, and 154 (or similar formulas under development)
are not used, the trachytopes can be applied for both 2D and 3D. For more details about
trachytope formulas, please check the user manual.

7.5 Transport equation

In this section the discretization of the transport equation is described. The transport equation
consists of an advection-diffusion equation with source and sink terms. The equation can be
used for the transport of salinity, temperature (heat), tracers and/or suspended sediments.
The equation looks as follows:

∂V c

∂t
= −∇ · (Qc) +∇ · (ν∇c) + h

(
Ssour − Ssinkc

)
(7.19)

where the terms from the left to right can be denoted as the volume rate of change of the
transported substance c, the advection of c, the diffusion of c and finally additional sources
and sinks of the substance c.

The horizontal advection and diffusivity terms are integrated explicitly in time. The vertical
advection term is treated explicitly in time as well, while the vertical diffusivity is treated im-
plicitly in time. The horizontal and vertical advection terms are discretized according to the
monotonized-central limiter, as described in the paragraph on higher-order reconstruction in
section 6.2.2. Finally, the sources are treated explicitly and the sinks are treated implicitly for
guaranteeing positive solutions.

Furthermore, local a time stepping (LTS) approach is applied. The approach is based on
the method described in Sanders (2008) for the shallow-water equations. In D-Flow FM, this
approach is used for solving the transport equation.

The basic idea of the method is the following. For (partly) explicit methods on unstructured
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grids, with large variability in grid cell size, the cell with the smallest grid size will determine
the allowed computational time step, based on the Courant criterion. This means that for
(possibly many) large cells, computations are performed with a smaller time step than would
be allowed for stability. The idea of the LTS is that the (explicit) updates can be done for each
cell individually. For this purpose, based on a local Courant criterion, a maximum allowed time
step is determined for each cell individually. This results in the fact that for small cells or cells
that have a high local flow velocity, the resulting time step is small and for larger cells or cell
with lower velocity, the allowed time step will be larger.

In this way, each cell has its own number of substeps for which the explicit horizontal terms
need to be computed and summed. This process is illustrated in Figure 7.3, for the simple
example of three different sub-time step sizes, for three parts of a 1D domain.

Figure 7.3: Schematic drawing of the local time stepping (LTS) mechanism. Three groups
of cells are updated in four loops. Heavy solid lines correspond to known data.
Heavy, broken lines correspond to data updated during time loop. LTS levels
for cells and faces are shown across top of figure in upright and italic fonts,
respectively. Figure taken from Sanders (2008).

Finally, when all sub-step contributions to the horizontal terms have been added to the other
terms in the right-hand size, the implicit contributions from the vertical diffusivity and the sink
terms are added to form independent vertical systems of equations for each water column,
which are solved using a tri-diagonal sweep (Thomas algorithm).

For clarity, the full algorithm is described here in words. For details, see Sanders (2008).
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Algorithm 52 transport: solve the transport equation using local time stepping

Get maximum transport time step
Determine number of sub-time steps needed for local time-stepping
Store the sub time steps ∆ts for each cell
Set ∆ts to smallest sub-timestep
For each sub-step:

determine which fluxes need to be updated
compute horizontal fluxes, explicit part
sum horizontal fluxes
check mass balance
determine which cells need to be updated
for 3D: compute vertical fluxes
solve vertical systems

End loop over substeps
Possible tracer decay

After this LTS algorithm has completed, all cells have been updated for a full time step ∆t,
from level n to n+ 1, in a fully conservative fashion.

7.6 Temporal discretization

Similar to the 2D part, the spatial discretization in 3D is also performed in a staggered manner.
The velocity normal components uj,l are defined at the cell faces (j, l), with face normal
vector nj,l, and the water levels ζk at cell centers k. If advection and diffusion are spatially
discretized as in Equation (7.13) then the temporal discretization of Equation (7.5) is

∂u

∂t
+Advec+

1

∆z
[ωz2 (uz2 − u)− ωz1 (uz1 − u)]

=− g
∂ζ

∂x
+

1

∆z

[
νV

∂u

∂z

]
z2

− 1

∆z

[
νV

∂u

∂z

]
z1

(7.20)

Remark 7.6.1. Note that in D-Flow FM the second term in the vertical diffusion term, namely
νHδz • ∇u is neglected in. It is done for simplification of the discretization. However, this
term becomes important in when the layer-level gradient is large, and neglecting this term
may cause large error.

After substitution of Advec from Equation (7.13) and discretize the other terms implicitly, it
yields the following discretized form of equation

1

∆t
un+1
j,l +Aij,lu

n+1
j,l +Aej,l + ω′

2u
n+1
z2

− ω′
1u

n+1
z1

− (ω′
2 − ω′

1)u
n+1
j,l

=
1

∆t
un
j,l −

gθj
∆xj

(
ζn+1

R(j) − ζn+1
L(j)

)
− g (1− θj)

∆xj

(
ζnR(j) − ζnL(j)

)
+ν ′

2

(
un+1
j,l+1 − un+1

j,l

)
− ν ′

1

(
un+1
j,l − un+1

j,l−1

)
(7.21)

where uz1 and uz2 are the upwinded velocities, ω′
1 = ωz1/∆zj,l, ω′

2 = ωz2/∆zj,l, ν ′
1 =

ν1/zj,l∆z1 and ν ′
2 = ν2/zj,l∆z2, ∆z1 = (zj,l + zj,l−1)/2 and ∆z2 = (zj,l + zj,l+1)/2.

ν1 and ν2 are the vertical eddy diffusivity at the top and the bottom of the velocity control
volume, respectively. Applying a first order upwind scheme, Equation (7.21) can be reformed
as follows

gθj
∆xj

(
ζn+1

R(j) − ζn+1
L(j)

)
+ alu

n+1
j,l−1 + blu

n+1
j,l + clu

n+1
j,l+1 = dl (7.22)
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where

al = −max (ω′
1, 0)− ν ′

1 (7.23)

bl =
1

∆t
+Aij,l +max (ω′

2, 0)−min (ω′
1, 0)− (ω′

2 − ω′
1) + ν ′

2 + ν ′
1 (7.24)

cl = min (ω′
2, 0)− ν ′

2 (7.25)

dl =
1

∆t
un
j,l −

g (1− θj)

∆xj

(
ζnR(j) − ζnL(j)

)
(7.26)

Remark 7.6.2. in D-Flow FM the discretization of vertical convection is also done by central
scheme (javau = 4). It is found that the central scheme may lead to instabilities.

Remark 7.6.3. In D-Flow FM the vertical advection can be switched off by using javau = 0.
However, switching off the vertical advection may lead to non-physical results.

We write Equation (7.21) in a general form as

un+1
j,l = −fu

n
j,l

(
ζn+1

R(j) − ζn+1
L(j)

)
+ ru

n
j,l (7.27)

Substituting Equation (7.27) in Equation (7.22) leads to the following relation for fu and ru

gθj
∆xj

(
ζn+1

R(j) − ζn+1
L(j)

)
+al

[
ruj,l−1 − fuj,l−1

(
ζn+1

R(j) − ζn+1
L(j)

)]
+bl

[
ruj,l − fuj,l

(
ζn+1

R(j) − ζn+1
L(j)

)]
+cl

[
ruj,l+1 − fuj,l+1

(
ζn+1

R(j) − ζn+1
L(j)

)]
= dl (7.28)

Equation (7.28) needs to be satisfied for any given initial water level (e.g. ζR(j) = ζL(j)) .
Hence, this equation can be splitted to two equations.

⋄ by making a homogeneous field and dropping the pressure terms,
⋄ by substituting the derived equation from the previous step, and derive a second equation.

Dropping the pressure terms in Equation (7.28) gives

alruj,l−1 + blruj,l + clruj,l+1 = dl (7.29)

Substituting Equation (7.29) in Equation (7.28), leads to the following equation for fu

alfuj,l−1 + blfuj,l + clfuj,l+1 = d′l (7.30)

where

d′l = − gθj
∆xj

(
ζn+1

R(j) − ζn+1
L(j)

)
(7.31)

This procedure is presented in Algorithm (53).

Equation (7.29) and Equation (7.30) are tri-diagonal matrices for ru and fu, respectively. They
are solved by Thomas Algorithm for tri-diagonal matrices (See Algorithm (54))
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Algorithm 53 vertical_profile_u0: compute fu
n
j,l and runj,l in un+1

j,l = −fu
n
j,l(ζ

n+1
R(j,l)−ζn+1

L(j) )+
ru

n
j

For each j:
a = 0, b = 1/∆t, c = 0, d1 = un

j,Lb(j)
/∆t

for l = 1 to M(j)− 1 do

adv1 = max (ω′
l, 0)

adv = −min (ω′
l, 0)

T1 = (νt + adv1)/∆zl+1

T2 = (νt + adv)/∆zl
bl+1 = bl+1 + T1

al+1 = al+1 − T1

bl = bl + T2

cl = cl − T2

dl+1 = un
j,l+1/∆t

end for
for l = 1 to M(j) do

bl = bl +Aij,k

dl = dl −Aej,k −
g (1− θj)

∆xj

(
ζnR(j) − ζnL(j)

)
d′l =

gθj
∆xj

end for
Solve alruj,l−1 + blruj,l + clruj,l+1 = dl by Algorithm (54)
Solve alfuj,l−1 + blfuj,l + clfuj,l+1 = d′l by Algorithm (54)

Algorithm 54 tridag: compute tridiagonal matrix of aiui−1 + biui + ciui+1 = di

β = b1

u1 = d1/β

for i = 2 to n step 1 do

ei =
ci−1

β

β = bi − aiei

ui =
di − aiui−1

β
end for

ui = ui − ei+1ui+1 , i = n− 1, n− 2, ..., 1
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The continuity equation is discretized as

V n+1
k − V n

k

∆t
= −

∑
j∈J (k)

M(j)∑
l=1

Au
n
j,l

[
θju

n+1
j,l + (1− θj)u

n
j,l

]
sj,k (7.32)

where V n+1
k is the volume of the water column at base cell k and Auj,l approximates the flow

area of face j, l

Auj,l = ∆zj,lwj (7.33)

with ∆zj,l is the distance between two layers l and l−1 related to base link j, wj is the width
of base link j. Subsitution of Equation (7.27) in Equation (7.32) yields the following equation.

V n+1
k − V n

k

∆t
+
∑

j∈J (k)

M(j)∑
l=1

Au
n
j,lθjfu

n
j,lζ

n+1
k −

∑
j∈J (k)

M(j)∑
l=1

Au
n
j,lθjfu

n
j,lζ

n+1
O(k,j)

= −
∑

j∈J (k)

M(j)∑
l=1

Au
n
j,l

[
(1− θj)u

n
j,l + θjru

n
j,l

]
sj,k (7.34)

Equation (7.32) can be summarized as

V n+1
k − V n

k

∆t
+Bn

k ζ
n+1
k +

∑
j∈J (k)

M(j)∑
l=1

Cn
j ζ

n+1
O(k,j) = dnk (7.35)

where Bn
k (diagonal entries), Cn

j (off-diagonal entry) and dnk (right-hand side) are computed
by Algorithm (55).

Algorithm 55 s1ini: compute the matrix entries and right-hand side in the water level equation
V n+1
k −V n

k

∆t
+Bn

k ζn+1
k +

∑
j∈J (k)

Cn
j ζn+1

O(k,j) = dnk , Equation (7.35)

Cn
j =−

M(j)∑
l=1

Au
n
j,lθjfu

n
j,l

Bn
k =−

∑
j∈J (k)

Cn
j

dnk =−
∑

j∈J (k)

M(j)∑
l=1

Au
n
j

[
(1− θj)u

n
j + θjru

n
j

]
sj,k

In order to solve Equation (7.35), we need to express V n+1
k in the terms of ζn+1

k . Since this
relation is non-linear, Equation (7.35) is solved iteratively by means of Newton iterations. After
linearizion of the volume, we have

V
n+1(p+1)
k = V

n+1(p)
k + A

n+1(p)
k

(
ζ
n+1(p+1)
k − ζ

n+1(p)
k

)
(7.36)

where A
n+1(p)
k is the wet bed area of cell k at (iterative) time level n + 1(p). Substituting

Equation (7.36) into Equation (7.35), yields

Br
n+1(p)
k ζ

n+1(p+1)
k +

∑
j∈J (k)

Cn
rj
ζ
n+1(p+1)
O(k,j) = dn+1(p)

rk
(7.37)
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the form of Equation (7.37) is identical with that of Equation (6.131) in 2D. Hence, the coeffi-
cients Bn

rk
, Cn

rk
and dnrk are computed at the same way of 2D, shown in Algorithm (20). Similar

to 2D, the unknown water levels k ∈ K are solved with a Krylov solver (see section 6.3.1).

The time step is finalized by employing Equation (7.27) back for un+1 as it is shown in Algo-
rithm (56). Moreover, the velocities and the discharge are integrated over depth.

Algorithm 56 u1q1: update velocity un+1
j,k and discharges qn+1

j and qa
n+1
j

if hu
n
j > 0 then

un+1
j,l =− fu

n
j,l(ζ

n+1
R(j) − ζn+1

L(j) ) + ru
n
j,l

qn+1
j,l =Au

n
j,l

(
θju

n+1
j,l + (1− θj)u

n
j,l

)
qa

n+1
j,l =Au

n
j,lu

n+1

qn+1
j,0 =

M(j)∑
l=1

qn+1
j,l

qa
n+1
j,0 =

M(j)∑
l=1

qa
n+1
j,l

Au
n+1
j,0 =

M(j)∑
l=1

Au
n+1
j,l

un+1
j,0 =qn+1

j,0 /Au
n+1
j,0

end if

7.7 Vertical fluxes

In order to solve the vertical advection in Equation (7.20), the values of ωz1 and ωz2 needs
to be calculated. In D-Flow FM the vertical fluxes are evaluated as the superposition of two
effects.

1 Mass balance for each cell
2 The vertical motion of the water surface.

If qH describes the sum of horizontal fluxes, then

δqHk,l = −
∑

j∈J (k)

qj,lsj,k + δqzk,l (7.38)

where δqHk,l = qHk,l − qHk,l−1 is the vertical flux passing through the interface (k, l), and
δqzk,l is the vertical flux from cell (k, l) under effect of vertical motion of the free surface.

The difference in the horizontal fluxes has to be compensated via the vertical fluxes by
δqHk,l = −δqV k,l (first under assumption δqzk,l = 0). As there is no vertical flux through
the bed (zero flux), the calculation of the flux starts from the first layer, and is advanced to the
upper layers.

The change of the water level (and the vertical location of layers) induces extra vertical fluxes
through layer interfaces. This flux is equal to the rate of volume which passes through the

152 of 207 Deltares



DRAF
T

Numerical schemes for three-dimensional flows

interface, because of its motion. This flux is equal to

qσ = A(Ωk)
zn+1
k,l − znk,l

∆t
(7.39)

where zk,l is the vertical position of the interface (k, l). Note that this flux does not effect the
value of the vertical velocity of the flow. The calculation of the vertical fluxes and velocities is
described in Algorithm (57).

Algorithm 57 u1q1: calculate the vertical fluxes qH
if hu

n
j > 0 then

qHk,0 = 0
for l = 1 to N (k) do

δqV k,l =−
∑

j∈J (k)

qj,lsj,k

δqHk,l =− δqV k,l

qHk,l =qHk,l−1 + δqHk,l

ωk,l =ωk,l−1 + δqHk,l/A (Ωk)

qHk,l =qHk,l − A(Ωk)
zn+1
k,l − znk,l

∆t
end for

end if

Remark 7.7.1. In the calculation of the fluxes, by marching, along the water column from the
bottom to the top, the fluxes on the water surface will not be equal to zero. The error in the
vertical flux on the water surface is supposed to be small, and it is neglected. Hence, the
procedure is not fully mass conservative.

7.8 Turbulence closure models

In D-Flow FM four types of turbulence closure models are employed.

1 Constant coefficient model
2 Algebraic eddy viscosity closure model
3 k-ε turbulence model
4 k-τ turbulence model

At the first model, the eddy viscosity is a user defined constant. The three last models are
based on the so-called eddy viscosity concept of Kolmogorov and Prandtl. The eddy viscosity
is related to a characteristic length scale and velocity scale. The common target of this models
is to find the eddy viscosity νV .

7.8.1 Constant coefficient model

This model is the simplest closure based on a constant value which has to be specified by the
user. We remark that a constant eddy viscosity will lead to parabolic vertical velocity profile
as laminar flow.
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7.8.2 Algebraic eddy viscosity closure model

The algebraic eddy viscosity model does not involve transport equations for the turbulent
quantities. This so-called zero order closure scheme consists of algebraic formulation. This
model uses analytical formulas to determine L and νV .

L = zuj

(
1− zuj

huj

)
(7.40)

νV = Lu∗bκ (7.41)

with κ the von Kármán constant. For homogeneous flow this leads to a logarithmic velocity
profile. The computation of νV is given in Algorithm (58).

Algorithm 58 update_verticalprofiles: compute the vertical turbulent viscosity νV

L = h̃uj,l

Compute
√
cf from Algorithm (51)

u∗j =
√
cfu

n+1
j,l

νV = κLu∗j

7.8.3 k-ε turbulence model

In the k-ε turbulence model, transport equations have to be solved for both the turbulent
kinetic energy k and for the energy dissipation ε. The mixing length L is then determined
from ε and k according to:

L = cD
k
√
k

ε
. (7.42)

The transport equations for k and ε are non-linearly coupled by means of their eddy diffusivity
Dk, Dε and dissipation terms. The transport equations for k and ε are given by:

∂k

∂t
+ u

∂k

∂x
+ v

∂k

∂y
+ ω

∂k

∂z
=

∂

∂z

(
Dk

∂k

∂z

)
+ Pk +Bk − ε (7.43)

∂ε

∂t
+ u

∂ε

∂x
+ v

∂ε

∂y
+ ω

∂ε

∂z
=

∂

∂z

(
Dε

∂ε

∂z

)
+ Pε +Bε − c2ε

ε2

k
(7.44)

with

Dk =
νmol

σmol

+
νV
σk

(7.45)

Dε =
νV
σε

(7.46)

In the production term Pk of turbulent kinetic energy, the horizontal gradients of the horizontal
velocity and all the gradients of the vertical velocities are neglected. The production term is
given by:

Pk = νV

[(
∂u

∂z

)2

+

(
∂v

∂z

)2
]

(7.47)

In stratified flows, turbulent kinetic energy is converted into potential energy. This is repre-
sented by a buoyancy flux Bk defined by:

Bk = g
νV
ρσρ

∂ρ

∂z
(7.48)
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with the Prandtl-Schmidt number σρ = 0.7 for salinity and temperature and σρ = 1.0 for
suspended sediments. The production term Pε and the buoyancy flux Bε are defined by:

Pε = c1ε
ε

k
Pk (7.49)

Bε = c1ε
ε

k
(1− c3ε)Bk (7.50)

with the calibration constants given by (Rodi, 1984):

c1ε = 1.44, (7.51)

c2ε = 1.92, (7.52)

c3ε =

{
0.0 unstable stratification
1.0 stable stratification

(7.53)

The vertical eddy viscosity νV is determined, with L prescribed by Equation (7.42), by:

νV = c′µL
√
k = cµ

k2

ε
(7.54)

with cµ = cDc
′
µ.

The k-ε equations are discretized explicitly in the horizontal direction and implicitly in the
vertical direction. The variables k and ε are located at the base flow-link and on the interface
of the layers. Figure 7.4 shows an schematic view of the control volume for k and ε.

j

k1 k2

(a) Top view

kj,l, εj,l

∆zj,l

∆zj,l+1

∆
z j

,l
+
1
/
2

(b) Side view

Figure 7.4: The top view (a) and the side view (b) of the location of the turbulence vari-
ables on the computational grid.

Advection

The horizontal advection term is discretized explicitly by means of first order upwind. The
horizontal advection can be written in non-conservative form as

u • (∇k) = ∇ • (uk)− k (∇ • u) (7.55)

Integration of this term yields,∫
V

u • (∇k) dV =

∫
V

∇ • (uk) dV −
∫
V

k (∇ • u) dV (7.56)
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∫
V

u • (∇k) dV =

∫
A

(uk) • ndA−
∫
A

k (u • n) dA (7.57)

u • (∇k) =
1

V

∑
qn+1
j,l kn

j,l −
kn+1
j,l

V

∑
qn+1
j,l (7.58)

Diffusion

The diffusion terms in equations Equation (7.43) and Equation (7.44) are discretized implicitly
as,

∂

∂z

(
Dk

∂τ

∂z

)
≈ θDk2

∆zj,l+1∆zj,l+1/2

(
kn+1
j,l+1 − kn+1

j,l

)
− θDk1

∆zj,l∆zj,l+1/2

(
kn+1
j,l − kn+1

j,l−1

)
+

(1− θ)Dk2

∆zj,l+1∆zj,l+1/2

(
kn
j,l+1 − kn

j,l

)
− (1− θ)Dk1

∆zj,l∆zj,l+1/2

(
kn
j,l − kn

j,l−1

)
(7.59)

∂

∂z

(
Dε

∂ε

∂z

)
≈ θDε2

∆zj,l+1∆zj,l+1/2

(
εn+1
j,l+1 − εn+1

j,l

)
− θDε1

∆zj,l∆zj,l+1/2

(
εn+1
j,l − εn+1

j,l−1

)
+

(1− θ)Dε2

∆zj,l+1∆zj,l+1/2

(
εnj,l+1 − εnj,l

)
− (1− θ)Dε1

∆zj,l∆zj,l+1/2

(
εnj,l − εnj,l−1

)
(7.60)

where indices 1 and 2 refer to the values on the bottom and the top of control volume, respec-
tively. The production terms for k equation is then discretized as

Pk ≈ νV

(
un+1
j,l+1 − un+1

j,l

)2
+
(
vn+1
j,l+1 − vn+1

j,l

)2
∆zj,l+1/2

(7.61)

The dissipation term is a sink and the buoyancy term may act as a sink and can destabilize the
system. In order to conserve a diagonal dominant matrix, a semi-implicit method (Patankar
trick) is used to guarantee positivity of the numerical solutions. The discretized terms read

Bk ≈

{
2Bk

n
j,l

kn+1
j,l

knj,l
−Bk

n
j,l if B < 0

Bk
n
j,l if B ≥ 0

(7.62)

εnj,l ≈

2εnj,l
kn+1
j,l

knj,l
− εnj,l if k − ε

kn+1
j,l

τnj,l
if k − τ

(7.63)

The production in the ε equation is reformed by substituting Equation (7.54) in Equation (7.49).

Pε =
c1εcµ
νV

kn
j,lPk (7.64)

The discretization of the buoyancy term for the ε equation is similar to that of k equation:
ensuring positivity by using Patankar trick as

Bε = c3εcµBkk
n
j,l (7.65)
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collecting all above-mentioned terms, in their discretized forms, leads to tridiagonal matrices
for k and ε in the form of

alk
n+1
j,l−1 + blk

n+1
j,l + clk

n+1
j,l+1 = dl (7.66)

and

alε
n+1
j,l−1 + blε

n+1
j,l + clε

n+1
j,l+1 = dl (7.67)

which are solved by Thomas algorithm, with the following boundary conditions. The boundary
conditions use the bed friction velocity, u∗b , and surface friction velocity, u∗t (caused by wind).

kj,0 =
u2
∗b√
cµ
, kj,M(j) =

u2
∗t√
cµ

(7.68)

∂ε

∂z

∣∣∣∣
j,1/2

= − |u∗b|
3

κ
(
1
2
∆zj,1 + µz0

)2 , ∂ε

∂z

∣∣∣∣
j,M(j)−1/2

=
|u∗t |

3

κ
(
1
2
∆zj,M(j)

)2 (7.69)

where µ takes values of 1 (based on theoretical analysis) or 9 (based on measurements).

Algorithm (59) and Algorithm (60) represent algorithms for k and ε equations, respectively.

Algorithm 59 update_verticalprofiles: compute the kinetic energy k

for l = 1 to M(j) do
D1 = Dkj,l−1/2/

(
∆zj,l+1/2∆zj,l

)
, D2 = Dkj,l+1/2/

(
∆zj,l+1/2∆zj,l+1

)
ν ′
V = min (νv, νmin)

ρz1 =
ρR(j),l+1−ρR(j),l

∆zR(j),l+1/2
, ρz2 =

ρL(j),l+1−ρL(j),l

∆zL(j),l+1/2

ρz =
1
2
(ρz1 + ρz2)

Bk = −g
ν′V
ρσρ

ρz

Pk = ν ′
V

(
uj,l+1−uj,l

∆zj,l+1/2

)2
+ ν ′

V

(
vj,l+1−vj,l
∆zj,l+1/2

)2
if k − ε then
Sk = εnj,l/k

n
l,j

β = 2
else if k − τ then
Sk = 1/τnj,l
β = 1

end if
al = −D1θ −max (ω1, 0)/∆zj,l+1/2

bl = 1/∆t+ (D1 +D2)θ + 2max(Bk, 0)/k
n
j,l + βSk

+max (ω2, 0)/∆zj,l+1/2 −min (ω1, 0)/∆zj,l+1/2

cl = −D2θ +min (ω2, 0)/∆zj,l+1/2

dl = kn
j,l/∆t−D2

(
kn
j,l − kn

j,l+1

)
(1− θ) +D1

(
kn
j,l−1 − kn

j,l

)
(1− θ)

+max(Bk, 0)−min(Bk, 0) + Pk + (β − 1)Skk
n
j,l −Akj,l

end for
Calculate u∗b by Algorithm (51)
a0 = 0, b0 = 1, c0 = 0, d0 = u2

∗b/
√
cµ

aM(j) = 0, bM(j) = 1, cM(j) = 0, dM(j) = u2
∗t/

√
cµ

Solve alkl−1 + blkl + clkl+1 = dl by Algorithm (54)
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Algorithm 60 update_verticalprofiles: compute the energy dissipation ε

for l = 1 to M(j) do
D1 = Dεj,l−1/2/

(
∆zj,l+1/2∆zj,l

)
, D2 = Dεj,l+1/2/

(
∆zj,l+1/2∆zj,l+1

)
ν ′
V = min (νv, νmin)
Pε = c1εcµk

n
j,lPk/ν

′
V

Bε = cµc1εk
n+1
j,l min(Bk, 0)

Sε = c2εε
n
j,l/k

n+1
j,l

al = −D1θ −max (ω1, 0)/∆zj,l+1/2

bl = 1/∆t+ (D1 +D2)θ + 2Sε +max (ω2, 0)/∆zj,l+1/2 −min (ω1, 0)/∆zj,l+1/2

cl = −D2θ +min (ω2, 0)/∆zj,l+1/2

dl = εnj,l/∆t−D2

(
εnj,l − εnj,l+1

)
(1− θ) +D1

(
εnj,l−1 − εnj,l

)
(1− θ)

−Bε + Pε + Sεε
n
j,l −Aεj,l

end for
a0 = 0, b0 = 1, c0 = −1, d0 = ∆zj,1max(u∗b , 0)

3/(κ∆(1
2
zj,1 + µz0)

2)

aM(j) = −1, bM(j) = 1, cM(j) = 0, dM(j) = 4 |u∗t |
3 /(κ∆zj,M(j))

Solve alεl−1 + blεl + clεl+1 = dl by Algorithm (54)

7.8.4 k-τ turbulence model

The time-scale of turbulence, τ , is defined by

τ =
k

ε
(7.70)

The eddy viscosity then equals

νV = cµ
k2

ε
= cµkτ (7.71)

where cµ = 0.09. The variable τ models a typical time-scale of turbulent eddies. The k − τ
equations read

∂k

∂t
+ u

∂k

∂x
+ v

∂k

∂y
+ ω

∂k

∂z
=

∂

∂z

(
Dk

∂k

∂z

)
+ Pk +Bk −

k

τ
(7.72)

∂τ

∂t
+ u

∂τ

∂x
+ v

∂τ

∂y
+ ω

∂τ

∂z
=

∂

∂z

(
Dτ

∂τ

∂z

)
+ Pτ +Bτ − (1− c2ε) (7.73)

+Dkτ +Dττ +Dkk

where

Dτ =
νmol

σmol

+
νV
στ

(7.74)

Pτ =
τ

k
(1− c1ε)Pk (7.75)

Bτ =
τ

k
(1− c3ε)Bk (7.76)

Dkτ =
1

h2

2

k
Dτ

∂τ

∂σ

∂k

∂σ
(7.77)

Dττ = − 1

h2

2

τ
Dτ

∂τ

∂σ

∂τ

∂σ
(7.78)

Dkk = − 1

h2

τ

k

∂

∂σ

[(
1

σε

− 1

σk

)
νV

∂k

∂σ

]
(7.79)
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The signs of the coefficients are so that the production term Pτ actually acts as sink of τ . This
can be explained by realizing that production of dissipation ε results in a faster dissipation of
turbulent eddies and therefore a smaller time-scale τ of turbulence. Even though Pτ acts as
a sink, it will still be called a production term because of the parallels with the ε-equation.
Likewise the dissipation term ετ is a source of τ .

By substituting Equation (7.71) in Equation (7.75) for k, it changes to the following form

Pτ =
cµ
νt
c1τPkτ

2 (7.80)

where c1τ = 1− c1ε is a constant. This equation is linearized by Picard method as

Pτ =
cµ
νt
c1τPkτ

nτn+1 (7.81)

Similar to the above expression, by substituting Equation (7.71) in Equation (7.76), the buoy-
ancy term is changed to the following form

Bτ = c3τ
cµ
νt
Bkτ

2 (7.82)

where c3τ = 1 is for stable stratification and c = −0.44 is for unstable stratification. After
linearization by the Picard method, it yields

Bτ = c3τ
cµ
νt
Bkτ

n
j,lτ

n+1
j,l (7.83)

or

Bτ = c3τ
cµ
στ

N2τnj,lτ
n+1
j,l (7.84)

and

N2 = − g

ρ0

∂ρ

∂z
(7.85)

The currently used values of c3τ for stable and unstable stratification guarantee that c3τN2 is
positive under all conditions, hence c3τ < 0 if N2 < 0 and c3τ > 0 if N2 > 0.

The diffusion terms Dττ and Dkτ are simplified by neglecting ν from the viscosity, as it is
small compared with the eddy viscosity. By inserting Equation (7.71) into the equations for
Dττ and Dkτ , it leads to the following form of equations

Dττ = −
(
2cµ
στ

k
∂τ

∂z

)
∂τ

∂z
(7.86)

Dkτ =

(
2cµ
στ

τ
∂k

∂z

)
∂τ

∂z
(7.87)

By summing Equation (7.86) and Equation (7.86) we have,

Dkτ +Dττ =
2cµ
στ

(
τ
∂k

∂z
− k

∂τ

∂z

)
∂τ

∂z
= A∂τ

∂z
(7.88)
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Equation (7.88) is an advection equation. This equation is discretized by means of first order
upwind as follows.

Dkτ +Dττ = max(A, 0)
τn+1
j,l − τn+1

j,l−1

∆zj,l
+min(A, 0)

τn+1
j,l+1 − τn+1

j,l

∆zj,l+1

(7.89)

where A is discretized as,

A ≈ cµ
στ

(
τj,l−1 + τj,l

2

kj,l − kj,l−1

∆zj,l
+

τj,l+1 + τj,l
2

kj,l+1 − kj,l
∆zj,l+1

−kj,l−1 + kj,l
2

τj,l − τj,l−1

∆zj,l
− kj,l+1 + kj,l

2

τj,l+1 − τj,l
∆zj,l+1

)
(7.90)

In this analysis, the term of Dkk in Equation (7.74) is neglected.

The vertical diffusion term (the first term in the right hand side of Equation (7.74)) is discretized
implicitly by means of θ method.

∂

∂z

(
Dτ

∂τ

∂z

)
≈ θDτ2

∆zj,l+1∆zj,l+1/2

(
τn+1
j,l+1 − τn+1

j,l

)
− θDτ1

∆zj,l∆zj,l+1/2

(
τn+1
j,l − τn+1

j,l−1

)
+

(1− θ)Dτ2

∆zj,l+1∆zj,l+1/2

(
τnj,l+1 − τnj,l

)
− (1− θ)Dτ1

∆zj,l∆zj,l+1/2

(
τnj,l − τnj,l−1

)
(7.91)

Combining all equations together, it leads to the following equation for each computational cell

alτ
n+1
j,l−1 + blτ

n+1
j,l + clτ

n+1
l+1 = dl (7.92)

Marching in the vertical direction for each j location, it leads to a tridiagonal matrix (for each
j) which is solved by Thomas algorithm (see Algorithm (61)). The boundary conditions at the
bed and water surface are applied as,

a0 = 0, b1 = 1, c0 = 0, d0 =
9κz0

max(u∗b , 10
−6)

√
cµ

aM(j) = 0, bM(j) = 1, cM(j) = 0, dM(j) = 0

Remark 7.8.1. The Dkk term is neglected because it may cause numerical instabilities. If k
goes to zero, then it follows from the positivity of k that ∂k/∂z also goes to zero. However,
numerically ∂k/∂z is not necessarily small when k goes to zero, especially on coarse grids,
and this term can grow to infinity. It is expected that this term is generally rather small because
the factor 1/σε − 1/σk in front of the term is only 0.2 with the current parameter settings.

Remark 7.8.2. The k-τ turbulence model is applied for the first time in D-Flow FM and it still
needs intensive verifications.
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Algorithm 61 update_verticalprofiles: compute the energy dissipation τ

for l = 1 to M(j) do
D1 = Dεj,l−1/2/

(
∆zj,l+1/2∆zj,l

)
, D2 = Dεj,l+1/2/

(
∆zj,l+1/2∆zj,l+1

)
ν ′
V = min (νv, νmin)
Pτ = (1− c1ε) cµτ

n
j,lPk/ν

′
V

Bτ = c3τcµBkτ
n
j,l

α1 =
(
kn
j,l−1 + kn

j,l

) (
τnj,l − τnj,l−1

)
/ (2∆zj,l)

α2 =
(
kn
j,l+1 + kn

j,l

) (
τnj,l+1 − τnj,l

)
/ (2∆zj,l+1)

Dττ = cµ (α1 + α2) /στ

β1 =
(
τnj,l−1 + τnj,l

) (
kn
j,l − kn

j,l−1

)
/ (2∆zj,l)

β2 =
(
τnj,l+1 + τnj,l

) (
kn
j,l+1 − kn

j,l

)
/ (2∆zj,l+1)

Dkτ = cµ (β1 + β2) /στ

D = (Dττ −Dkτ ) /∆zj,l+1/2

al = −D1θ −max(D, 0)−max (ω1, 0)/∆zj,l+1/2

bl = 1/∆t+ (D1 +D2)θ −Bτ − Pτ +max(D, 0)−min(D, 0)
+max (ω2, 0)/∆zj,l+1/2 −min (ω1, 0)/∆zj,l+1/2

cl = −D2θ +min(D, 0) + min (ω2, 0)/∆zj,l+1/2

dl = τnj,l/∆t−D2

(
τnj,l − τnj,l+1

)
(1− θ) +D1

(
τnj,l−1 − τnj,l

)
(1− θ)

−(1− c2ε)−Aεj,l

end for
Calculate u∗ by Algorithm (51)
a0 = 0, b1 = 1, c0 = 0, d0 = 9κz0/

(
max(u∗b , 10

−6)
√
cµ
)

aM(j) = 0, bM(j) = 1, cM(j) = 0, dM(j) = 0
Solve alτl−1 + blτl + clτl+1 = dl by Algorithm (54)

7.9 Hydraulic structures in 3D

The current implementation is mostly based on the concept of overview modeling, where the
structure does not close any computational layers. For 3D applications, the discretizations in
section 6.8 (for 2D modeling of hydraulic structures) are modified as follows:

All layers get the same momentum equation as in the 2D case, i.e.:

fuk = fu, ruk = ru for k = 1, kmx,

with the 3D coefficients fuk and ruk for layer k and the 2D coefficients fu and ru and kmx
the maximum number of layers of the velocity point, equal to the maximum number of layers
of the upwind water point. For the calculation of the velocity and flow rate through layer k at
the new time level n+ 1 we get:

un+1
k = fuk

(
hn+1
1 − hn+1

2

)
+ ruk,

and

Qn+1
k = auku

n+1
k ,

with auk the cross-sectional flow are of layer k. The cross-sectional flow area is chosen as a
layer fraction of the cross-sectional flow area of the structure aus, which depends on the sill
height and width, the gate height and upstream water level at supercritical flow and the up-
and downstream water levels at subcritical flow.

auk = aus
zwsk − zwsk−1

zwskt − zwskb−1

,
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with zwsk the level of the ceiling of layer k, zwsk−1 the level of the floor of layer k, and kt
the top layer and kb the bottom layer of the upwind water level point. In σ-layers, these are
always kmx and layer 1, respectively. In z-layers, these kt and kb can be indices between
kmx and 1, depending on the local position of the bed and the free surface.

The current 3D implementation is aimed at reproducing the discharge through the structure
for 2D models. This has advantages when reproducing water levels in a 3D model, where
calibration is handled in 2D. However, it should be noted that it has limitation when modelling
e.g. stratified flows across hydraulic structures, as the vertical structure of the flow and the
possible blocking of computational layers by the sill or the gate, is not taken into account in
the present approach.

7.10 Baroclinic pressure

Under the shallow-water assumption, the vertical momentum equation is reduced to a hydro-
static pressure equation. Vertical accelerations due to buoyancy effects and due to sudden
variations in the bottom topography are not taken into account. So:

∂P

∂z
= −gρ (7.93)

After integration between two successive layers, in the vertical direction, the hydrostatic pres-
sure is

P (z) = P2 + g

∫ ∆zl

0

ρ(z)dz (7.94)

where P2 is the pressure on the upper layer level. The local density is related to the values of
temperature and salinity by the equation of state. The density is assumed to change linearly
at each flow cell, along the layer in the vertical direction. The density can be described as
ρ(z) = ρ2 + αz, with α = (ρ1 − ρ2) /∆zl, where ρ1 and ρ2 are the densities on the top
and bottom of the flow cell, respectively. After substitution of this relation in Equation (7.94)
and integration , it gives,

P (z) = P2 + g

(
ρ2∆zl +

1

2
α∆z2l

)
(7.95)

The force on the flow is derived by integration of the pressure in the vertical direction.

F (z) =

∫ ∆zl

0

P (z)dz (7.96)

Subsituting Equation (7.96) in Equation (7.95) gives,

F (z) = P2∆zl +
1

2
gρ2∆z2l +

1

6
gα∆z3l (7.97)

Remark 7.10.1. For integration of Equation (7.95) and Equation (7.96), the vertical coordinate
is locally set starting from the top of the cell (on the layer) toward downward.

The merely of this method is to calculate F (z) at the cells between the layers, and integrate
the force from the water surface to the cell levels. Once it is done, the forces around the
control volume are integrate. This method is applied in Algorithm (62).
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Algorithm 62 addbaroc2: compute the baroclinic pressure along σ-layers

First, extrapolate the density on the water surface

βL =
∆zL(j),M(j)−1

∆zL(j),M(j) +∆zL(j),M(j)−1

βR =
∆zR(j),M(j)−1

∆zR(j),M(j) +∆zR(j),M(j)−1

ρ̃L,M(j) =(1 + βL) ρL(j),M(j) − βLρL(j),M(j)−1

ρ̃R,M(j) =(1 + βR) ρR(j),M(j) − βRρR(j),M(j)−1

for l = M(j)− 1 to 1 step −1 do

βL =
∆zL(j),l

∆zL(j),l +∆zL(j),l+1

βR =
∆zR(j),l

∆zR(j),l +∆zR(j),l+1

ρ̃L,l =βLρL(j),l + (1− βL) ρL(j),l+1

ρ̃R,l =βRρR(j),l + (1− βR) ρR(j),l+1

end for
for l = M(j) to 1 step −1 do

αL =
ρ̃L,l−1 − ρ̃L,l

∆zL(j),l
, αR =

ρ̃R,l−1 − ρ̃R,l

∆zR(j),l

PL =g

M(j)∑
l′=l

1

2
ρ̃L,l′∆zL(j),l′ +

1

6
αL∆z2L(j),l′

PR =g

M(j)∑
l′=l

1

2
ρ̃R,l′∆zR(j),l′ +

1

6
αR∆z2R(j),l′

GL =PL∆zL(j),l +
1

2
ρ̃L,l∆z2L(j),l +

1

6
αL∆z3L(j),l

GR =PR∆zR(j),l +
1

2
ρ̃R,l∆z2R(j),l +

1

6
αR∆z3R(j),l

ρ̃j,l =
1

4

(
ρ̃L(j),l + ρ̃L(j),l−1 + ρ̃R(j),l + ρ̃R(j),l−1

)
GB =

(
zL(j),l−1 − zR(j),l−1

)M(j)∑
l′=l

ρ̃j,l′∆zj,l′

GT =
(
zL(j),l − zR(j),l

) M(j)∑
l′=l+1

ρ̃j,l′∆zj,l′

δPl =GL −GR +GB −GT

Vρ =
1

4

[
∆zL(j),l (ρ̃L,l + ρ̃L,l−1) + ∆zR(j),l (ρ̃R,l + ρ̃R,l−1)

]
∆P =δPl/Vρ

end for
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7.10.1 Time integration of the baroclinic pressure

For the time integration of the baroclinic pressure term the Adams-Bashforth method is ap-
plied:

barocn+1 =

(
1 + ft

2

)
barocn −

(
ft

2

)
barocn−1 (7.98)

with ft = ∆tn+1/∆tn. In the first time step the Forward Euler time is applied, because the
model solution at time level n− 1 is not available.

7.11 Artificial mixing due to σ-coordinates

The fluxes of the transport equations consist of both advective and diffusive fluxes. In sigma
co-ordinates the approximation of the advective fluxes does not introduce large truncation
errors. Therefore in this section we consider only diffusive fluxes given by

Fi = DH
∂c

∂xi

, i = 1, 2; F3 = DV
∂c

∂x3

(7.99)

where DH , denotes the horizontal eddy diffusion coefficient and DV denotes the vertical
eddy diffusion coefficient.

It is difficult to find a numerical approximation that is stable and positive. Near steep bottom
slopes or near tidal flats where the total depth becomes very small, truncations errors in the
approximation of the horizontal diffusive fluxes in σ-coordinates are likely to become very
large, similarly to the horizontal pressure gradient. Thus a complete transformation must be
included. However, in that case numerical problems are encountered concerning accuracy,
stability and monotonicity. In D-Flow FM a method is applied which gives a consistent, sta-
ble and monotonic approximation of the horizontal diffusion terms even when the hydrostatic
consistency condition is violated. For details we refer the user to Stelling and Van Kester
(1994)

7.11.1 A finite volume method for a σ-grid

Applying the Gauss theorem to the transport equation yields

∂

∂t

∫
v

c dv +

∮
s

F • n ds = 0 (7.100)

Instead of transforming the transport equation to σ-co-ordinates, we generate a sigma grid
by choosing a distribution of the vertical co-ordinate sigma. The vertical diffusive fluxes are
straightforward to implement. The only difficulty is the approximation of the horizontal diffusive
fluxes. To explain this method, it is sufficient to consider a simplified one-dimensional heat
equation (i.e. a transport equation without advection in one dimension)

∂c (x, z, t)

∂t
− ∂

∂x

(
DH

∂c (x, z, t)

∂x

)
= 0 (7.101)

For this equation a finite volume method has to be constructed that meets the following re-
quirements:

1 consistent approximation of the horizontal diffusive fluxes
2 fulfilment of the min-max principle
3 minimal artificial vertical diffusion
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A non-linear approach is chosen which consists of the following steps.

⋄ Step 1
First, diffusive fluxes fi+ 1

2
,l+ 1

2
, l = 0, . . . , 2K (K is the σ-layer number), are defined

according to

fi+ 1
2
,l+ 1

2
=


DH min (∆mc,∆nc)

z
i+1

2 ,l+1
−z

i+1
2 ,l

xi+1−xi
, if ∆mc > 0 ∧∆nc > 0

DH max (∆mc,∆nc)
z
i+1

2 ,l+1
−z

i+1
2 ,l

xi+1−xi
, if ∆mc ≤ 0 ∧∆nc ≤ 0

0, if ∆mc∆nc < 0
(7.102)

The differences ∆m/nc = ∆m/nci+ 1
2
,l+ 1

2
are given by (l = 0, . . . , 2K)

fi+ 1
2
,l+ 1

2
=

{
∆mci+ 1

2
,l+ 1

2
= ci+1

(
zi,m(l) − ci,m(l)

)
∆nci+ 1

2
,l+ 1

2
= ci+1,n(l) − ci

(
zi+1,n(l)

) (7.103)

where ci (z) is a simple linear interpolation formula given by

ci (z) =


ci,1, if z ≤ zi,1

z−zi,k
zi,k+1−zi,k

ci,k+1 +
zi,k+1−z

zi,k+1−zi,k
ci,k, if zi,k < z ≤ zi,k+1

ci,K , if z ≥ zi,K

(7.104)

⋄ Step 2
In this step the diffusive fluxes are added to the appropriate control volumes according to

V n+1
i,k cn+1

i,k = V n
i,kc

n
i,k −∆t

∑
∀l|m(l)=k

fn
i+ 1

2
,l+ 1

2
+∆t

∑
∀l|n(l)=k

fn
i− 1

2
,l+ 1

2
(7.105)

where n is the time index, t = n∆t and V n denotes the size of the control volume. The
absence of advection implies V n = V n+1

7.11.2 Approximation of the pressure term

The horizontal gradients of the pressure must be approximated for the horizontal momen-
tum equations. The pressure gradient must be computed along the same verticals as the
horizontal concentration gradients. The pressure p in Cartesian coordinates is given by

p (x, z) =

∫ ζ

z

ρ (x, z′, t) gdz′ (7.106)

From the Leibniz rule it follows that ∂p/∂x is given by

∂p

∂x
=

∂

∂x

∫ ζ(x)

z

ρ (x, z′) gdz′ =

∫ ζ(x)

z

g
∂

∂x
ρ (x, z′) dz′ + gρ (ζ)

∂ζ

∂x
(7.107)

The relation between the density ρ and the salinity s and temperature T is given by the
equation of state, namely ρ = ρ (s(x, t), T (x, t)). The integral in Equation 7.107 is replaced
by a summation over the intervals which are in the water column above the velocity point with
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vertical co-ordinate z.(
∂p

∂x

)(
xi+ 1

2
,z

)
=g

2K+1∑
l=K+1

[(
∂ρ

∂s

)
f (s)

DH

+

(
∂ρ

∂T

)
f (T )

DH

]
i+ 1

2
,l+ 1

2

+ g
zi+ 1

2
,k+1 − z

zi+ 1
2
,k+1 − zi+ 1

2
,k

[(
∂ρ

∂s

)
f (s)

DH

+

(
∂ρ

∂T

)
f (T )

DH

]
i+ 1

2
,k+ 1

2

+ gρ
ζi+1 − ζi

∆x
(7.108)

where k = max
(
l|zi+ 1

2
,l < z

)
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This chapter elaborates on the parallelization of D-Flow FM, which enables the simulation
on 1D and 2D network. The sequential time loop is described in section 6.3. This chapter
emphasises on the modifications needed for parallelization.

8.1 Parallel implementation

The goal of parallelization of D-Flow FM is twofold. We aim for faster computations on shared-
or distributed-memory machines and the ability to model problems that do not fit on a single
machine. To this end we decompose the computational domain into subdomains and apply
the "single program, multiple data" (SPDM) technique for parallelization. Since we apply
SPDM, we want each subdomain (process) to be as autonomous as can be and require that

⋄ each subdomain has its own unique computational mesh,
⋄ the subdomain interfaces act as boundaries where data is communicated,
⋄ only primitive variables u and ζ are communicated,
⋄ the parallel and sequential algorithm yield the same results, except for round-off errors

that is,
⋄ the modelling in all subdomains is identical, has the same time-step, et cetera. Note this

this requirement compromises our aim for autonomous subdomain modelling.

8.1.1 Ghost cells

Keeping our design choices in mind, it is apparent from Equation (6.25) to Equation (6.121)
that during a time-step we need to compute advection, diffusion and the water-level gradient in
the momentum equation anywhere in the subdomain. Similarly, we need to compute the dis-
charge divergence in the continuity equation, Equation (6.123) anywhere in our subdomains.
The stencil used for computing momentum advection and diffusion is depicted in Figure 8.12.

It will be clear that the stencil can not be applied near the subdomain interfaces. Since we
choose not to modify the stencil as explained in the foregoing, the subdomains need to be
augmented with ghost cells that only serve to compute the time-step update for the "inter-
nal" water-levels and velocities. No valid velocity- and water-level update are computed for
the "external", ghost water-levels and velocities. Instead, values at the next time-level are
copied from the corresponding neighboring subdomains, where valid time-step updates were
computed, see Figure 8.2.

The question remains how many ghost cells need to be supplied. The stencil for the momen-
tum advection and diffusion is depicted in Figure 8.12. To be able to count the number of
cells in the stencil, we firstly define the level of a neighboring cell. Cells adjacent to a face are
level 1. Their neighboring cells, i.e. cells that share at least one common face, are level 2, et
cetera, see Figure 8.12. We say that a cell is in the stencil, if at least one of it’s face-normal
velocity components is required in the stencil, since in D-Flow FM a face-normal velocity can
only exist if both its neighboring cells exist.

It will not be hard to see that one level of ghost cells suffices for the water-level gradients in
the momentum equation and divergence in the continuity equation. The spatial discretization
of momentum advection and diffusion will not be explained in detail here, but it is important
to understand that advection and diffusion are in fact computed at cell centers, based on
reconstructed cell-centered data, and interpolated back to the faces. So we have

⋄ one level of neighbors for the interpolation from cell-centered to face-normal advection
and diffusion,
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Figure 8.2: Ghost cells
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Table 8.1: METIS settings

parameter/option value meaning

routine METIS_PartGraphRecursive
or METIS_PartGraphKway

mesh partitioning method

NITER 100 Number of iterations for the refine-
ment algorithms at each stage of the
uncoarsening process

UFACTOR 1.001 allowed load imbalance

CONTIG 0 or 1 enforce contiguous subdomains (1)
or not (0), only available when using
K-way method

⋄ one additional level for a higher order cell-centered (collocated) discretization, and
⋄ one additional level for the reconstruction of the cell-centered velocity vector from the

edge-normal data.

This sums up to four levels of neighbors, as can be seen in Figure 8.12. Consequently, four
levels of ghosts cells are required for momentum advection and diffusion.

The ghost level of cell k is called gs(k) and of face j gu(j). They are related by

gu(j) =


min(gs(L(j)), gs(R(j))), face j is a ghost face, not on the subdomain interface,

max(gs(L(j)), gs(R(j))), face j is a ghost face, on the subdomain interface,

0 face j is not a ghost face.

(8.1)

If face j is on the subdomain interface, it can only be a ghost face of subdomain id if the
neighboring ghost cell has a lower subdomain number than id, since we say that it is owned
by the subdomain with the lowest number, explained hereafter, see Equation (8.2). If face j is
not on the subdomain interface, it can only be a ghost face of subdomain id if both adjacent
cells have subdomain numbers other than id.

8.1.2 Mesh partitioning with METIS

The METIS software package,see Karypis (2013), is used for partitioning the mesh. A dual
graph of the mesh is firstly generated, and then partitioned. METIS produces a cell coloring
of the unpartitioned mesh, that we will refer to as the cell subdomain number ids(k), where
k is the cell number. Two partition methods are available in METIS: multilevel K-way (default
method in D-Flow FM) and Recursive Bisection. The former enables to enforce (by default)
contiguous subdomains, provided that the input mesh is contiguous. If the input mesh is not
contiguous, then the method results in non-contiguous subdomains. The multilevel K-way
method is fast when partitioning to a large number of subdomains (greater than 8) Karypis
(2013). However, it is observed that this comes at the cost of a reduced homogeneous distri-
bution of cells over the subdomains.

The non-default METIS settings employed are listed in Table 8.1.

Any cell in the unpartitioned mesh uniquely belongs to a subdomain, so the water-level un-
knowns can uniquely be assigned a subdomain number. The face-normal velocity unknowns,
on the other hand, can not, since the velocities on the subdomain interfaces can belong to
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either of the two adjacent subdomains. We choose to uniquely assign a subdomain number
idu(j) to face j by taking the minimum subdomain number of its two adjacent cells:

idu(j) = min (ids(L(j)), ids(R(j))) . (8.2)

Data will be communicated from the subdomain that owns the data to the subdomains that
require the data.

With the cell coloring available, the subdomain meshes are augmented with four layers of
ghost cells and written to partition mesh files. There, the cell coloring is also written and then
read during the initialization of the parallel computation.

Remark 8.1.1. Level 5 ghost cells are not included in the subdomain meshes, except when
all its neighboring cells have level 4 or lower, or are non-ghost cells. In that case all faces of
the level 5 ghost cell are present in the subdomain mesh. Since in D-Flow FM cells with all
its faces being defined in the mesh can not be disregarded, the level 5 ghost cells itself are
included in the subdomain mesh.

8.1.3 Communication

The whole domain mesh was partitioned as described in the foregoing. It is not used during
the parallel computations and we will only consider the subdomains from now on.

During the computations we need to update the ghost values from the other subdomains.
However, we do not need to communicate all variables at all instances in the time step. It
depends on the operator under consideration. To this end, three sets of ghost values are
defined:

Gs = {k : gs(k) = 1} , (8.3)

Gsall = {k : 1 ≤ gs(k) ≤ N + 1} , (8.4)

Gu = {j : 1 ≤ gu(j) ≤ N + 1} , (8.5)

where N = 4 is the number of ghost levels. It may come as a surprise that we include ghost
levels up to N+1, however see Remark 8.1.1 in this respect. Gs refers to an update of the first
level of ghost water-levels, needed in the continuity equation, Gsall to all ghost water-levels
and Gu to all face-normal velocity components respectively.

Communication information is not stored to any subdomain specific file. Instead, coordinates
of the ghost cells and ghost faces are communicated with the other subdomains in the initial-
ization phase of the computations and, doing so, send lists Ss, Ssall and Su are constructed,
see Algorithm (63).

Remark 8.1.2. We have a one-to-one mapping of task (or ranks) to subdomain number, i.e.
task i will correspond to subdomain i, i ∈ {0, N − 1}, with N being the number of subdo-
mains.

Algorithm 63 partition_init: initialize the parallel communication

generate subdomain numbers based on the partitioning polygon (cells with subdomain
numbers other than the own subdomain number will correspond to ghost cells)
set the ghost levels
make the ghost lists Gs, Gsall and Gu

make the send lists Ss, Ssall and Su

The update of the ghost water-levels is performed by MPI communication, see Algorithm (64).
The other ghost types are updated similarly.
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Algorithm 64 update_ghosts: update the ghost water-levels by means of MPI communication

non-blocking MPI-send ζk, k ∈ Ss to other subdomains
MPI-receive ζk, k ∈ Gs from other subdomains
wait for send to terminate

8.1.4 Parallel computations

In the parallel run, each task will

⋄ prepare the subdomain model, i.e.

⋄ read the subdomain mesh,
⋄ read the boundary conditions,
⋄ read external forcings,
⋄ et cetera,

⋄ initialize the parallel communication, Algorithm (63),
⋄ perform the time stepping, as in Algorithm (24),
⋄ update ghost values during the time stepping,
⋄ output flow variables.

Note that the boundary conditions, external forcing files, et cetera are shared by the subdo-
mains. In fact, they are just the sequential files and do not need to be partitioned. Only the
mesh and the model definition file need to be partitioned. The partitioned model definition
files will contain references to the subdomain mesh, all other information equals its sequential
counterpart.

The parallel time-step is shown in Algorithm (65). The parallel extension of Algorithm (23)
is trivial and listed in Algorithm (66). The parallel solver for the water-level equation Algo-
rithm (25) is described in the next section.

Remark 8.1.3. It is sufficient for the parallel water-level solver to update only level-1 ghost
water-levels Gs. It is therefore necessary that all ghost water-levels Gsall are updated right
after the solve, as shown in Algorithm (65).

The parallel extensions of the following will remain unmentioned:

⋄ discharge boundary conditions,
⋄ cross sections and observation stations (for post-processing).

8.1.5 Parallel Krylov solver

The unknown water levels k ∈ K in Equation (6.131) are solved in the same manner as in
case of the sequential computations, Algorithm (25), except for the solver itself, which now is
a parallel Krylov solver. We have two solvers available:

1 the parallelized version of the sequential algorithm (Algorithm (26)), and
2 a solver from the Portable, Extensible Toolkit for Scientific Computation (PETSc), Balay

et al. (2013).
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Algorithm 65 parallel step_reduce: perform a time step; parallel-specific statements are out-
lined

while first iteration or repeat time-step (type 1) do
tn+1 = tn +∆t
compute fu

n
j and ru

n
j with Algorithm (16)

while first iteration or repeat time-step (type 2) do
compute the matrix entries Bn

k , Cn
j and right-hand side dnk in the water-level equation

with Algorithm (17)
determine the set of water-levels that need to be solved, Algorithm (19)
i = 0
ζ
n+1(0)
k = ζnk

while
(
max

k

∣∣∣ζn+1(i)
k − ζ

n+1(i−1)
k

∣∣∣ > ε ∧ not repeat time-step
)

∨ i = 0 do

i = i+ 1
compute the matrix entries Br

n
k , Cr

n
j and right-hand side dr

n
k in the water-level

equation with Algorithm (20)
parallel solve the unknown water-levels and obtain ζ

n+1(i+1)
k , see section 8.1.5

update all ghost water-levels ζn+1(i−1)
k , k ∈ Gsall

check positivity of water height with Algorithm (21) and repeat time-step if necessary
with modified ∆t (type 1) or hu

n
j (type 2, default)

reduce ’repeat time-step’
if not repeat time-step then

compute water-column volume V
n+1(i+1)
k and wet bed area A

n+1(i+1)
k with Algo-

rithm (22)

reduce max
k

∣∣∣ζn+1(i)
k − ζ

n+1(i−1)
k

∣∣∣
end if

end while
end while

end while
ζn+1
k = ζ

n+1(i+1)
k

compute velocities un+1
j , update ghost velocities un+1

j , k ∈ Gu and compute dis-

charges qn+1
j and qa

n+1
j at the next time level, Algorithm (66)
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Algorithm 66 parallel u1q1: update velocity un+1
j , update ghost velocities un+1

j , and com-

pute discharges qn+1
j and qa

n+1
j ; parallel-specific statements are outlined

if hu
n
j > 0 then

un+1
j = −fu

n
j (ζ

n+1
R(j) − ζn+1

L(j)) + ru
n
j

else
un+1
j = 0

end if
update ghost velocities un+1

j , j ∈ Gu

if hu
n
j > 0 then

qn+1
j =Au

n
j

(
θju

n+1
j + (1− θj)u

n
j

)
(8.6)

qa
n+1
j =Au

n
j u

n+1 (8.7)
else

qn+1
j =0 (8.8)

qa
n+1
j =0 (8.9)

end if

8.1.5.1 parallelized Krylov solver

The (reduced) global system to be solved has the form of A[0,0] · · · A[0,N−1]

...
. . .

...

A[N−1,0] . . . A[N−1,N−1]


 s[0]

...

s[N−1]

 =

 d[0]

...

d[N−1]

 , (8.10)

where the superscript [id] indicates the domain number. A matrix-vector multiplication can be
written as

...

A[id,id]s[id] +
∑

jd̸=id

A[id,jd]s[jd]

...

 ,

where the diagonal diagonal contribution is computed as in the sequential case, see Equa-
tion (6.142), however for the internal unknowns only

A[id,id]s[id] =


...

Br
[id]
k s

[id]
k +

∑
j∈J [id](k)\G[id]

s

Cr
[id]
j s

[id]
O(k,j)

...

 (8.11)

and the off-diagonal contributions are computed by means of the ghost values G [id]
s

∑
jd̸=id

A[id,jd]s[jd] =


...∑

j∈J [id](k)∩G[id]
s

Cr
[id]
j s

[id]
O(k,j)

...

 , (8.12)
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provided that the ghost values G[id]
s are up-to-date .

Remark 8.1.4. Equation (8.10) shows that water-level unknowns in Ss are required for the
global matrix-vector multiplication. For that reason, they are disregarded in the Maximum
Degree algorithm and will never be eliminated from the solution vector s.

The system is solved by a parallelized preconditioned Conjugate Gradient method of Algo-
rithm (26), as shown in Algorithm (67), where we consider one subdomain id only and have
dropped the superscript [id]. The parallel extensions are trivial, except for the preconditioner
P that is. We apply a non-overlapping Additive Schwarz MILU factorization and precondition-
ing Pz

(i+1)
r = r(i+1) can then be expressed as

P [id]z(i+1)[id]
r = r[id] −

∑
jd̸=id

A[id,jd]z(i)[id]
r , (8.13)

where P [id] approximates A[id,id]. We use a MILU factorization available from SPARSKIT,
Saad (1994).

8.1.5.2 PETSc solver

As an alternative to the parallelized sequential Krylov solver, as explained in the foregoing, we
can apply a solver from the Portable, Extensible Toolkit for Scientific Computation (PETSc),
Balay et al. (2013). We use default settings.

8.2 Test-cases

In this section two test-cases are considered. To assess the scalability of the parallel im-
plementation, the computing time is measured for decompositions with varying number of
subdomains.

We measure the wall-clock times spent in the time-steps. This does not include file output
for post-processing. At prescribed modelling-time instances, computing times are measured
and summed (in time) by each subdomain. The maximum computing times over all the sub-
domains are used to determine a time-step average during a measurement interval, i.e.

Ttime-stepk =

max
d

nk∑
i=1

∆T d
i −max

d

nk−1∑
i=1

∆T d
i

nk − nk−1

, (8.14)

where ∆T d
i is the wall-clock computing time of time-step i and subdomain d, k is a mea-

surement index and n is the number of time steps. We will refer to this time as the time-step
averaged wall-clock time of a "time-step". The time-step wall-clock time is further divided into

⋄ MPInon-sol: MPI-communication time not related to the Krylov solver. These are the up-
date of the ghost-values Gsall and Gu, respectively and the reduction of the variables as
indicated in Algorithm (65),

⋄ solver: total Krylov solve time. This is the time spent by the Krylov solver, including MPI-
communication,

⋄ MPIsol: MPI-communication time in the Krylov solver. Unfortunately, no such times are
available for the PETSc solver,

⋄ #Krylov iterations: the time-step averaged number of iterations needed for the Krylov
solver to converge.

We expect that the non-communication times will show nearly linear scalability and foresee
that the communication times behave much worse. Furthermore, if the precondition becomes
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Algorithm 67 conjugategradient_MPI: solve water-level equation with a preconditioned Con-
jugate Gradient method; parallel specific statements are outlined

compute preconditioner P
update ghost values ζk, k ∈ Gs

compute initial residual r(0) = d− As(0)

compute maximum error ε = ∥r(0)∥∞
update ghost residuals rk, k ∈ Gs

apply preconditioner Pz
(0)
r = r(0)

set p(0) = z
(0)
r

compute inner product
〈
r(0), z

(0)
r

〉
reduce inner product

〈
r(0), z

(0)
r

〉
reduce maximum error ε = ∥r(0)∥∞
i = 0
while ε > tol do

update ghost values pk, k ∈ Gs

compute Ap(i)

compute
〈
p(i), Ap(i)

〉
reduce

〈
p(i), Ap(i)

〉
α(i) =

〈
r(i),z(i)

r

〉
⟨p(i),Ap(i)⟩

s(i+1) = s(i) + α(i)p(i)

r(i+1) = r(i) − α(i)Ap(i)

compute maximum error ε = ∥r(i+1)∥∞ ε = ∥r(0)∥∞
reduce maximum error ε = ∥r(0)∥∞
update ghost values r(i+1), k ∈ Gs

apply preconditioner Pz
(i+1)
r = r(i+1)

if ε > tol then
compute

〈
r(i+1), z

(i+1)
r

〉
reduce

〈
r(i+1), z

(i+1)
r

〉
β(i+1) =

〈
r(i+1),z(i+1)

r

〉
〈
r(i),z(i)

r

〉
p(i+1) = z

(i+1)
r + β(i+1)p(i)

i = i+ 1
end if

end while
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less effective when the number of subdomains increases, the number of iterations will in-
crease.

The speed-up factor f can now be defined as:

fk(N) =
Ttime-stepk

∣∣
N

Ttime-stepk

∣∣
ref

N, (8.15)

where N is the number of subdomains and ref refers to a reference domain decomposition,
for which we take the decomposition with the smallest number of subdomains available. Note
that we do not compare with the single-domain, sequential simulations.

The simulations were conducted on the Deltares h4 cluster and the Lisa cluster at SURFsara,
see Lisa. For all our simulations, we took four cores per node.
Remark 8.2.1. Wall-clock times on Lisa were limited to 2.5 hours, so, depending on the
number of subdomains, some simulations advanced further in modelling time than others.

For our comparison, we will always compare time-step averaged computing times at the same
modelling times.

8.2.1 Schematic Waal model

The first test-case under considerations is the schematic Waal model, see Yossef and Zagonjoli
(2010). The model has a rectangular domain of length 30 km and width 1800 m. It has a deep
center section of width 600 m and bottom levels varying from 0.795 (left) to −2.205 m (right).
The shallow outer part has a bottom level varying from 6.988 (left) to 3.988 m (right).

The mesh size in the deep, center part is 2 × 2 m2 and in the shallow outer part 2 × 4 m2.
The total number of cells is 9 000 000. The maximum time step is 0.45 sec. The domain is
decomposed in 8, 16, 32, 64 and 128 subdomains, respectively. The partitioning is depicted
in Figure 8.3.

(a) 8 subdomains

(b) 16 subdomains

(c) 32 subdomains

(d) 64 subdomains

(e) 128 subdomains

Figure 8.3: Partitioning of the schematic Waal model with METIS
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Timing results on the SURFsara Lisa cluster are presented in Table 8.2 and the corresponding
speed-up factor in Figure 8.4. The results on the Deltares h4 cluster are shown in Table 8.3
and Figure 8.5 respectively. Recall that the wall-clock computing time on Lisa was limited to
2.5 h, see Remark 8.2.1.

The results show that the speed-up factor with 128 subdomains is 108.66 on the Lisa cluster
and 85.1 on the Deltares h4 cluster. This is a factor of 0.84, respectively 0.67 away from their
theoretical maximum. The reduced scaling on the h4 may be attributed to the poorer scaling
of the Krylov solver on the h4, due to communication overhead. It is interesting to see that
the number of iterations of the Krylov solver does not increase significantly when the number
of subdomain is increased. We do therefore not expect the preconditioner to have lost its
effectiveness. On the other hand, a more advanced preconditioner should reduce the number
of iterations in all cases and consequently the communication overhead, especially for large
numbers of subdomains.

Table 8.2: time-step averaged wall-clock times of the Schematic Waal model; Lisa; note:
MPI communication times are not measured for the PETSc solver

#dmns t [h] time step [s] MPInon-sol [s] solver [s] MPIsol [s] #Krylov-iters

8 0.33 3.24200 0.07037 1.29400 0.00000 15.06000

0.65

1.25

2.57

3.00

16 0.33 1.64950 0.03644 0.64200 0.00000 16.01500

0.65 1.62100 0.02498 0.62600 0.00000 15.00000

1.25

2.57

3.00

32 0.33 0.87400 0.03441 0.34975 0.00000 16.84500

0.65 0.87000 0.03687 0.34800 0.00000 16.00000

1.25 0.84851 0.03394 0.32426 0.00000 14.14356

2.57

3.00

64 0.33 0.44050 0.01904 0.18345 0.00000 17.22000

0.65 0.44950 0.01983 0.17100 0.00000 16.00000

1.25 0.42673 0.01962 0.16139 0.00000 14.25248

2.57 0.41782 0.01906 0.15347 0.00000 13.20792

3.00

128 0.33 0.23870 0.01792 0.09415 0.00000 17.03000

0.65 0.22450 0.01344 0.09075 0.00000 16.00000

1.25 0.21733 0.01334 0.08361 0.00000 14.17327

2.57 0.21436 0.01332 0.08069 0.00000 13.09901

3.00 0.21733 0.01352 0.08020 0.00000 13.00000
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Figure 8.4: Speed-up of the schematic Waal model; Lisa
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Table 8.3: time-step averaged wall-clock times of the Schematic Waal model; h4; note:
MPI communication times are not measured for the PETSc solver

#dmns t [h] time step [s] MPInon-sol [s] solver [s] MPIsol [s] #Krylov-iters

8 0.33 3.74800 0.05160 1.31350 0.00000 15.06000

0.65 3.74000 0.05333 1.31050 0.00000 15.00000

1.25 3.62376 0.05163 1.19802 0.00000 13.00000

2.57 3.56436 0.05029 1.13861 0.00000 12.00990

3.00 3.56931 0.05019 1.13861 0.00000 12.06436

16 0.33 1.91550 0.04459 0.69650 0.00000 16.01500

0.65 1.88450 0.04294 0.66700 0.00000 15.00000

1.25 1.84158 0.04365 0.61881 0.00000 13.43564

2.57 1.81188 0.04255 0.59406 0.00000 12.63861

3.00 1.79703 0.04414 0.57426 0.00000 12.03960

32 0.33 1.01650 0.05025 0.39900 0.00000 16.84500

0.65 1.01300 0.06046 0.38300 0.00000 16.00000

1.25 0.96535 0.04963 0.34703 0.00000 14.10396

2.57 0.95050 0.04990 0.33020 0.00000 13.00990

3.00 0.95050 0.04960 0.33416 0.00000 13.00000

64 0.33 0.56200 0.03892 0.23580 0.00000 17.41000

0.65 0.54450 0.03161 0.22550 0.00000 16.61000

1.25 0.53465 0.03145 0.21634 0.00000 14.88614

2.57 0.50990 0.03226 0.19158 0.00000 13.14851

3.00 0.51485 0.03446 0.19307 0.00000 13.20297

128 0.33 0.35225 0.03553 0.17490 0.00000 17.03000

0.65 0.34550 0.03375 0.17005 0.00000 16.00000

1.25 0.32228 0.03249 0.14703 0.00000 14.18317

2.57 0.30941 0.03199 0.13465 0.00000 13.04950

3.00 0.31040 0.03188 0.13812 0.00000 13.0099
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Figure 8.5: Speed-up of the schematic Waal model; h4
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Table 8.4: time-step averaged wall-clock times of the Schematic Waal model; SDSC’s
Gordon; note: MPI communication times are not measured for the PETSc
solver

#dmns t [h] time step [s] MPInon-sol [s] solver [s] MPIsol [s] #Krylov-iters

8 0.33 2.85100 0.03012 1.15250 0.00000 15.06000

0.65 2.85000 0.03273 1.14950 0.00000 15.00000

1.25 2.73762 0.02946 1.04455 0.00000 13.00000

2.57 2.68317 0.03151 0.99505 0.00000 12.00000

3.00 2.68812 0.03118 0.99505 0.00000 12.03960

16 0.33 1.49700 0.01458 0.63950 0.00000 16.00500

0.65 1.47000 0.01882 0.61200 0.00000 15.00000

1.25 1.41584 0.01454 0.56238 0.00000 13.20792

2.57 1.39604 0.01439 0.54455 0.00000 12.49505

3.00 1.38614 0.01494 0.52970 0.00000 12.04455

32 0.33 0.75100 0.02350 0.32120 0.00000 16.84500

0.65 0.73850 0.02326 0.31000 0.00000 16.00000

1.25 0.71535 0.02308 0.28564 0.00000 14.11386

2.57 0.69802 0.02249 0.27129 0.00000 13.00000

3.00 0.70297 0.02239 0.27129 0.00000 13.00000

64 0.33 0.38245 0.01719 0.16115 0.00000 17.41000

0.65 0.37900 0.01764 0.15610 0.00000 16.59500

1.25 0.35941 0.01667 0.14059 0.00000 14.90594

2.57 0.36386 0.02118 0.13960 0.00000 13.28218

3.00 0.34851 0.01580 0.13020 0.00000 13.22277

128 0.33 0.19340 0.01688 0.07790 0.00000 17.03000

0.65 0.18550 0.01454 0.07245 0.00000 16.00000

1.25 0.18119 0.01455 0.06812 0.00000 14.16832

2.57 0.17723 0.01499 0.06436 0.00000 13.05446

3.00 0.17673 0.01435 0.06337 0.00000 13.00000
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Figure 8.6: Speed-up of the schematic Waal model; SDSC’s Gordon; PETSc
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Table 8.5: time-step averaged wall-clock times of the Schematic Waal model; SDSC’s
Gordon; CG+MILUD

#dmns t [h] time step [s] MPInon-sol [s] solver [s] MPIsol [s] #Krylov-iters

8 0.33 5.73000 0.02977 4.04400 0.06205 22.86000

0.65 5.64500 0.03029 3.96000 0.07000 22.24500

1.25 5.44554 0.02777 3.76238 0.03337 20.89109

2.57

3.00

16 0.33 3.13550 0.02596 2.27150 0.05955 24.54500

0.65 3.02000 0.02771 2.16000 0.06665 23.00000

1.25 2.89604 0.02547 2.03465 0.06297 21.40594

2.57

3.00

32 0.33 1.65000 0.02941 1.21550 0.08840 25.00000

0.65 1.61900 0.03393 1.18350 0.08590 24.00000

1.25 1.53960 0.02714 1.10396 0.07139 22.19802

2.57

3.00

64 0.33 0.88850 0.02410 0.66200 0.07745 26.20000

0.65 0.85700 0.02364 0.62950 0.06110 24.99000

1.25 0.82970 0.01814 0.60792 0.06282 23.75248

2.57

3.00

128 0.33 0.46550 0.01583 0.35070 0.06740 25.48500

0.65 0.44900 0.01584 0.33450 0.06505 24.01500

1.25 0.43465 0.01655 0.31980 0.05683 22.79703

2.57 0.42327 0.01655 0.30891 0.05990 21.89604

3.00 0.42079 0.01568 0.30446 0.05743 21.77228
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Figure 8.7: Speed-up of the schematic Waal model; SDSC’s Gordon; CG+MILUD

8.2.2 esk-model

(a) 4 subdomains (b) 8 subdomains

(c) 16 subdomains (d) 32 subdomains

(e) 64 subdomains (f) 128 subdomains

Figure 8.8: Partitioning of the ’esk-model’ with METIS
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Table 8.6: time-step averaged wall-clock times of the ’esk-model’; Lisa; note: MPI com-
munication times are not measured for the PETSc solver

#dmns t [h] time step [s] MPInon-sol [s] solver [s] MPIsol [s] #Krylov-iters

4 0.35 0.33152 0.00314 0.09406 0.00000 3.11984

0.45

0.63

0.75

0.85

1.10

8 0.35 0.16979 0.00355 0.05513 0.00000 3.30041

0.45 0.17875 0.00451 0.05752 0.00000 4.06024

0.63

0.75

0.85

1.10

16 0.35 0.09284 0.00271 0.03237 0.00000 3.09976

0.45 0.10073 0.00637 0.03337 0.00000 3.86932

0.63 0.10140 0.00341 0.03565 0.00000 3.75257

0.75

0.85

1.10

32 0.35 0.04625 0.00171 0.01493 0.00000 3.36052

0.45 0.04792 0.00200 0.01844 0.00000 4.34007

0.63 0.04908 0.00202 0.01608 0.00000 3.97418

0.75 0.04865 0.00209 0.01487 0.00000 3.09526

0.85

1.10

64 0.35 0.02323 0.00122 0.00999 0.00000 3.22176

0.45 0.02508 0.00148 0.01139 0.00000 4.30026

0.63 0.02567 0.00111 0.00915 0.00000 3.74654

0.75 0.02543 0.00120 0.00894 0.00000 3.00078

0.85 0.02545 0.00182 0.00846 0.00000 2.99741

1.10

128 0.35 0.01341 0.00087 0.00681 0.00000 3.89344

0.45 0.01514 0.00119 0.00782 0.00000 3.00000

0.63 0.01489 0.00125 0.00803 0.00000 4.00273

0.75 0.01496 0.00101 0.00614 0.00000 3.06459

0.85 0.01415 0.00090 0.00566 0.00000 3.00109

1.10 0.01414 0.00100 0.00554 0.00000 3.00715
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Figure 8.9: Speed-up of the ’esk-model’; Lisa
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Table 8.7: time-step averaged wall-clock times of the Schematic Waal model; Gordon;
note: MPI communication times are not measured for the PETSc solver

#dmns t [h] time step [s] MPInon-sol [s] solver [s] MPIsol [s] #Krylov-iters

8 0.33 2.85100 0.03012 1.15250 0.00000 15.06000

0.65 2.85000 0.03273 1.14950 0.00000 15.00000

1.25

2.57

3.00

16 0.33 1.02900 0.02056 0.20595 0.00000 0.00000

0.65 1.01950 0.01502 0.20350 0.00000 0.00000

1.25 1.02277 0.01663 0.20297 0.00000 0.00000

2.57 1.01980 0.01624 0.20396 0.00000 0.00000

3.00

32 0.33 0.74950 0.02224 0.32080 0.00000 16.84500

0.65 0.73900 0.02293 0.31000 0.00000 16.00000

1.25 0.71634 0.02423 0.28614 0.00000 14.11386

2.57

3.00

64 0.33 0.37265 0.01499 0.15550 0.00000 17.41000

0.65 0.36750 0.01483 0.15075 0.00000 16.59500

1.25 0.35792 0.01431 0.14059 0.00000 14.90594

2.57 0.34802 0.01390 0.13119 0.00000 13.28218

3.00 0.34802 0.01353 0.13069 0.00000 13.22277

128 0.33 0.23665 0.03332 0.10325 0.00000 17.03000

0.65 0.23350 0.03431 0.09945 0.00000 16.00000

1.25 0.22624 0.03432 0.09287 0.00000 14.16832

2.57 0.22228 0.03386 0.08861 0.00000 13.05446

3.00 0.22129 0.03327 0.08812 0.00000 13.00000
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Figure 8.10: Speed-up of the schematic Waal model; Gordon
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8.2.3 San Fransisco Delta-Bay model
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Table 8.8: time-step averaged wall-clock times of the San Fransisco Delta-Bay model;
Gordon; note: MPI communication times are not measured for the PETSc
solver

#dmns t [h] time step [s] MPInon-sol [s] solver [s] MPIsol [s] #Krylov-iters

8 12.00 0.14902 0.03099 0.01477 0.00000 16.25754

24.00 0.14889 0.02928 0.01528 0.00000 17.40124

36.00 0.14595 0.02592 0.01490 0.00000 15.49879

48.00 0.14759 0.02715 0.01527 0.00000 16.83857

60.00 0.14408 0.02398 0.01498 0.00000 15.99481

72.00 0.14509 0.02441 0.01519 0.00000 16.30267

84.00 0.14399 0.02353 0.01504 0.00000 16.12262

96.00 0.14880 0.02593 0.01518 0.00000 16.15620

108.00 0.14632 0.02445 0.01512 0.00000 16.01746

120.00 0.15038 0.02918 0.01510 0.00000 15.54151

16 12.00 0.08892 0.02771 0.00958 0.00000 13.72882

24.00 0.08726 0.02380 0.00981 0.00000 15.03835

36.00 0.08581 0.02293 0.00973 0.00000 12.97420

48.00 0.08607 0.02290 0.00991 0.00000 14.47656

60.00 0.08461 0.02147 0.00993 0.00000 13.58980

72.00 0.08183 0.01859 0.01005 0.00000 14.13277

84.00 0.08015 0.01716 0.00999 0.00000 13.80952

96.00 0.08123 0.01806 0.00998 0.00000 13.95845

108.00 0.08180 0.01852 0.00989 0.00000 13.77271

120.00 0.08547 0.02227 0.00985 0.00000 13.07582

32 12.00 0.05542 0.02316 0.00776 0.00000 18.51036

24.00 0.06021 0.02928 0.00791 0.00000 20.00691

36.00 0.09062 0.05868 0.00775 0.00000 17.71882

48.00 0.06466 0.03252 0.00790 0.00000 19.38103

60.00 0.06179 0.02975 0.00779 0.00000 18.33746

72.00 0.06537 0.03326 0.00785 0.00000 18.83925

84.00 0.06325 0.03124 0.00780 0.00000 18.64772

96.00 0.06352 0.03145 0.00782 0.00000 18.54788

108.00 0.06137 0.02929 0.00787 0.00000 18.57109

120.00 0.06140 0.02937 0.00775 0.00000 17.73242

64 12.00 0.03032 0.01249 0.00593 0.00000 19.85593

24.00 0.05749 0.03969 0.00612 0.00000 22.02080

36.00 0.06610 0.04823 0.00595 0.00000 18.88561

48.00 0.07463 0.05664 0.00613 0.00000 21.21491

60.00 0.07151 0.05354 0.00605 0.00000 19.72320

72.00 0.07442 0.05639 0.00611 0.00000 20.56026

84.00 0.06798 0.05006 0.00607 0.00000 20.07916

96.00 0.06844 0.05042 0.00611 0.00000 20.40540

108.00 0.06524 0.04724 0.00609 0.00000 20.24993

120.00 0.05862 0.04063 0.00606 0.00000 19.43446
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Figure 8.11: Speed-up of the San Fransisco Delta-Bay model; Gordon
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Table 8.9: time-step averaged wall-clock times of the San Fransisco Delta-Bay model;
Gordon; non-solver MPI communication times

#dmns t [h] MPIu [s] MPIsall [s] MPIreduce

8 12.00 0.00028 0.02238 0.00833

24.00 0.00029 0.01985 0.00914

36.00 0.00028 0.01609 0.00956

48.00 0.00028 0.01600 0.01086

60.00 0.00029 0.01268 0.01101

72.00 0.00027 0.01284 0.01130

84.00 0.00028 0.01227 0.01098

96.00 0.00027 0.01346 0.01220

108.00 0.00028 0.01249 0.01168

120.00 0.00028 0.01756 0.01133

16 12.00 0.00030 0.02184 0.00557

24.00 0.00030 0.01594 0.00756

36.00 0.00031 0.01250 0.01012

48.00 0.00030 0.01202 0.01058

60.00 0.00031 0.00982 0.01134

72.00 0.00030 0.00866 0.00963

84.00 0.00031 0.00795 0.00890

96.00 0.00031 0.00869 0.00907

108.00 0.00032 0.00807 0.01013

120.00 0.00030 0.01173 0.01024

32 12.00 0.00032 0.01859 0.00424

24.00 0.00033 0.01228 0.01667

36.00 0.00033 0.00884 0.04951

48.00 0.00032 0.00736 0.02484

60.00 0.00034 0.00595 0.02347

72.00 0.00031 0.00582 0.02713

84.00 0.00033 0.00574 0.02517

96.00 0.00033 0.00669 0.02442

108.00 0.00033 0.00588 0.02307

120.00 0.00032 0.00809 0.02096

64 12.00 0.00021 0.00902 0.00326

24.00 0.00022 0.00886 0.03060

36.00 0.00023 0.00696 0.04103

48.00 0.00023 0.00676 0.04966

60.00 0.00022 0.00437 0.04895

72.00 0.00024 0.00395 0.05220

84.00 0.00024 0.00375 0.04607

96.00 0.00023 0.00423 0.04597

108.00 0.00021 0.00374 0.04329

120.00 0.00020 0.00517 0.03526192 of 207 Deltares
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8.3 Governing equations

D-Flow FM solves the two- and three-dimensional shallow-water equations. We will focus
on two dimensions first. The shallow-water equations express conservation of mass and
momentum and can be put into the following form:

d

dt

∫
Ω

h dΩ +

∫
∂Ω

hu • n dΓ =0, (8.16)

d

dt

∫
Ω

hu dΩ +

∫
∂Ω

huu • n dΓ =−
∫
∂Ω

1

2
h2n dΓ−

∫
Ω

h∇d dΩ (8.17)

+

∫
∂Ω

(νh(∇u+∇uT )) • n dΓ +

∫
Ω

τ dΩ,

(8.18)

where ζ is the water level, h the water height, d = ζ − h the bed level, u the velocity vector,
g the gravitational acceleration, ν the viscosity and τ is the bottom friction:

τ =
g

C2
∥u∥u, (8.19)

with C being the Chézy coefficient.

8.4 Spatial discretization

The spatial discretization is performed in a staggered manner, i.e. velocity normal components
uj are defined at the cell faces j, with face normal vector nj , and the water levels sk at cell
centers k.

We define volume Vk associated with cell Ωk as

Vk =

∫
Ω

h dΩ (8.20)

and the discharge through face j as

qj =

∫
Γj

hu • n dΓ, (8.21)

which is discretized as

qj = hupwind(j)uj. (8.22)

The upwind cell associated with face j is

upwind(j) =

{
L(j), uj ≥ 0,

R(j), uj < 0.
(8.23)

We define the water-column volume Vk as

Vk =

∫
Ωk

h dΩ (8.24)

Deltares 193 of 207



DRAF
T

D-Flow Flexible Mesh, Technical Reference Manual

and for simplicity assume that it can be expressed as

Vk = bAkhk, (8.25)

where Ωk is the (two-dimensional) grid cell and bAk is the area of its horizontal projection.
Note that this relation does not hold in case of (partially) dry cells.

Borsboom et al. show that Equation (8.16) and Equation (8.18) can be discretized conserva-
tively as:

d

dt
hk =

1

bAk

∑
j∈J (k)

qj1j,k, (8.26)

d

dt
(h̃juj) =− gh̄j

(sR(j) − sL(j))

∆xj

−
(
αLjAL(j) + αRjAR(j)

)
• nj

+
(
αLjDL(j) + αRjDR(j)

)
• nj + τj, (8.27)

where ∆xj = ∥xR(j) − xL(j)∥, h̃j is the weighted average face water height

h̃j = αL(j)hL(j) + αR(j)hR(j), (8.28)

h̄j is the average face water height

h̄j =
1

2
hL(j) +

1

2
hR(j), (8.29)

Ak is the cell-centered conservative advection of hu, discretized as

Ak =
1

bAk

∑
l∈J (k)

ucupwind(l)ql1l,k. (8.30)

and Dk is the cell-centered diffusion, not discussed further. The cell-center based velocity
vectors are reconstructed from the face-normal velocity components with

uck =
1

bAk

∑
j∈J (k)

(xuj − xck)uj∆Γj1j,k. (8.31)

Using

d

dt
(h̃juj) = h̃j

duj

dt
+ uj

dh̃j

dt
= h̃j

duj

dt
+

(
αL

dhL(j)

dt
+ αR

dhR(j)

dt

)
(8.32)

and substituting Equation (8.26) we obtain

duj

dt
=− g

h̄j

h̃j

(sR(j) − sL(j))

∆xj

− 1

h̃j

(
αLj

1

bAL(j)

∑
l∈J (L(j))

(ucupwind(l) • nj − uj)ql1l,k+

αRj

1

bAR(j)

∑
l∈J (R(j))

(ucupwind(l) • nj − uj)ql1l,k

)
+

1

h̃j

(
αLjDL(j) + αRjDR(j)

)
• nj +

τj

h̃j

. (8.33)
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Figure 8.12: Stencil for momentum advection and diffusion; the numbers indicate the level
of the neighboring cells

The advection and pressure-gradient terms are conform Kramer and Stelling. In D-Flow FM,
however, the following form is implemented:

duj

dt
=− g

(sR(j) − sL(j))

∆xj

− 1

Vuj

(
αLj

∑
l∈J (L(j))

(ucupwind(l) • nj − uj)ql1l,k+

αRj

∑
l∈J (R(j))

(ucupwind(l) • nj − uj)ql1l,k

)
+

1

h̄j

(
αLjDL(j) + αRjDR(j)

)
• nj +

τj
hRj

, (8.34)

where Vuj is a face-based volume

Vuj = αLjVL(j) + αRjVR(j) (8.35)

and hRj is the hydraulic radius of face j.

The stencil used for computing momentum advection and diffusion is depicted in Fig. 8.12.

Issues:

⋄ orthogonal meshes hard to achieve, compromises mesh smoothness,
⋄ non-conservative advection and different pressure gradient term implemented, but gives

best results for shock problems,
⋄ higher-order implementation gives satisfactory results for swirling flows,
⋄ shear-dominated flow suffers from wide advection stencil, see Poiseuille test-case.
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A Analytical conveyance

A.1 Conveyance type 2

In conveyance type 2, we consider the flow is one dimensional, and we calculate the bed
friction based on intersection perpendicular to the flow direction(Figure A.1). Parameter K2

can be derived as follows.

αi =
zi+1 − zi
yi+1 − yi

=
hi − hi+1

yi+1 − yi
(A.1)

K2 =

∫
A

C
√
RdA , or K2 =

∫
A

C

√
dA

dP
dA (A.2)

Where R is hydraulic radius, C is Chézy coefficient, A is the cross sectional area and P is
the wet area.

dA = h(y)dy , h(y) = hi − αi (y − yi) (A.3)

dP =

√
dy2 + (αidy)

2 =
√

1 + α2
i dy (A.4)

K2 =

∫ yi+1

yi

C

(1 + α2
i )

1
4

h(y)
3
2dy , (C =

h(y)
1
6

n
) (A.5)

K2 =

∫ yi+1

yi

1

n(1 + α2
i )

1
4

h(y)
5
3dy (A.6)

K2 =

∫ yi+1

yi

1

n(1 + α2
i )

1
4

(hi − αi (y − yi))
5
3dy (A.7)

K2 =
−1

nαi(1 + α2
i )

1
4

3

8
{hi − αi (y − yi)}

8
3

∣∣∣yi+1

yi
(A.8)

K2 =
1

nαi(1 + α2
i )

1
4

3

8

(
h

8
3

i − h
8
3

i+1

)
(A.9)
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yi yi+1

hi+1

hi Ai

Pi

z

y

Figure A.1: A schematic view of cross sectional bed bathemetry perpendicular to the flow
direction.

yi

yi+1

Figure A.2: A schematic view of flow nodes and the velocity components in two-
dimensional case.

A.2 Conveyance type 3

Conveyance type 3 is similar to type 2, except it is extended to consider the second velocity
component. Considering a two-dimensional case as illustrated in Figure A.2, we can derive
K3 as follows,

uU

C2R
= i, U =

u

β2
(A.10)

uj = βC
√

Rj

√
i, K3 =

βAjR
2
3
j

n
(A.11)

β = βi − δ (y − yi) , δ =
βi − βi+1

yi+1 − yi
(A.12)

If αi and α′
i are the slopes in the streamwise and transverse directions respectively, we have,

K3 =

∫ yi+1

yi

βi − δ (y − yi)

n
(
1 + α2

i + α
′2
i

) 1
4

(hi − αi (y − yi))
5
3dy (A.13)

K3 =
T

n
(
1 + α2

i + α
′2
i

) 1
4

(A.14)
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T =

∫ yi+1

yi

(βi − δ (y − yi)) (hi − αi (y − yi))
5
3dy (A.15)

T =

∫ yi+1

yi

(βi − δ (y − yi)) (hi − αi (y − yi))
5
3dy (A.16)

T =
δ

αi

∫ yi+1

yi

(
βi
αi

δ
− αi (y − yi)

)
(hi − αi (y − yi))

5
3dy (A.17)

T =
δ

αi

∫ yi+1

yi

(
βi
αi

δ
− hi + (hi − αi (y − yi))

)
(hi − αi (y − yi))

5
3dy (A.18)

T =
δ

αi

∫ yi+1

yi

(
βi
αi

δ
− hi

)
(hi − αi (y − yi))

5
3 + (hi − αi (y − yi))

8
3dy (A.19)

T =
−δ

αiαi

(
βi
αi

δ
− hi

) 3

8

∣∣∣(hi − αi (y − yi))
8
3

∣∣∣yi+1

yi
+

−δ

αiαi

3

11

∣∣∣(hi − αi (y − yi))
11
3

∣∣∣yi+1

yi

(A.20)

T =
δ

αiαi

[(
βi
αi

δ
− hi

) 3

8

(
h

8
3
i − h

8
3
i+1

)
+

3

11

(
h

11
3
i − h

11
3
i+1

)]
(A.21)

T =
1

α

[(
βi − hi

δ

αi

)
3

8

(
h

8
3
i − h

8
3
i+1

)
+

δ

αi

3

11

(
h

11
3
i − h

11
3
i+1

)]
(A.22)

K3 =
T

n
(
1 + α2

i + α
′2
i

) 1
4

=

(
βi − hi

δ

αi

)
Kα+

1

n(1 + α2
si + α2

ni)
1
4

δ

αiαi

3

11

(
h

11
3
i − h

11
3
i+1

)
(A.23)
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