D-Flow Flexible Mesh

Developer’s Guide DElta fes

D-Flow Flexible Mesh

Developer’s Guide

Version: 1.2.0
Revision: 78359

25 April 2024

D-Flow Flexible Mesh, Developer’s Guide

Published and printed by:

Deltares telephone: +31883358273
Boussinesqweg 1 e-mail: Information
2629 HV Delft WWW: Deltares

P.O. 177

2600 MH Delft
The Netherlands

For sales contact: For support contact:
telephone: +31 8833581 88 telephone: +31 883358100
e-mail: Sales e-mail: Support

WWW: Sales & Support WwWw: Sales & Support

Copyright © 2024 Deltares

All rights reserved. No part of this document may be reproduced in any form by print, photo
print, photo copy, microfilm or any other means, without written permission from the publisher:
Deltares.

mailto: info@deltares.nl
https://www.deltares.nl
mailto: software@deltares.nl
https://www.deltares.nl/en/software-and-data
mailto: software.support@deltares.nl
https://www.deltares.nl/en/software-and-data

Contents

Contents
List of Tables v
List of Figures vii
List of To Do’s ix
1 A guide to this developer’s guide 1
1.1 Introduction e 1
1.2 Documentversion andrevisions 1
1.3 Typographical conventions 1
1.4 Changes with respect to previous versions 1
2 Source tree architecture of D-Flow FM 3
2.1 Introduction L e e 3
2.2 Source builds on Windows: Intel, MS Visual Studio and MSBuild 3
2.2.1 Solution file, templates and projectfiles 3
2.3 Source builds on Linux: Intel or GNU, automake and autoconf. 3
3 The Basic Model Interface (BMI) for D-Flow FM 5
3.1 Introduction 5
3.2 Basicuseofthe APl 5
3.3 FullAPldescription 5
3.4 List of available model variablesviaBMI 5
3.5 Adding new model variables to the BMl interfaces 8
4 Parallellization 9
41 Introduction L e 9
4.2 CodedependenciesonMPI. 9
4.3 Partition mesh and MDU files in the command line 9
4.4 Parallel runs and debuggingon Windows 10
45 Somerelated developmento 11
5 Deployment of D-Flow FM 13
5.1 Introduction 13
5.2 TeamCity specifics 13
5.3 Deployment on Windows platforms 13
5.4 Deploymenton Linux platforms 13
5.4.1 Source distribution for Linux 13
5.4.2 Subversion distribution for Linux 13
5.4.3 Binary distribution for Linux00 13
5.4.3.1 Known possible issues with binary distributions 14
6 Miscelaneous stuff 15

6.1 Debugging dflowfm.dll running under Delft3D Flexible Mesh Suite or D-HYDRO Suite 15

7 Test bench 17
7.1 Introduction e e 17
7.2 Location of all parts of the testbench 17
7.3 Howtoaddanewtestcase 17

Index 21

Deltares iii

D-Flow Flexible Mesh, Developer’'s Guide

iv Deltares

List of Tables

List of Tables

3.1 List of available variables via D-Flow FM's BMI API. 5

Deltares v

D-Flow Flexible Mesh, Developer’'s Guide

vi

Deltares

List of Figures

List of Figures

Deltares Vii

D-Flow Flexible Mesh, Developer’'s Guide

viii Deltares

List of To Do’s

List of To Do’s
5.1 sortoutUbuntuissues e 13
5.2 include actualerrorhereo 14

Deltares iX

D-Flow Flexible Mesh, Developer’'s Guide

X Deltares

1.1

1.2

1.3

1.4

A guide to this developer’s guide

Introduction

This Developer’'s Guide concerns the hydrodynamic module, D-Flow FM, of the Delft3D Flex-
ible Mesh software suite. This guide is intended for people working with the source code, for
example developers, or users of D-Flow FM’s API.

The recommended way of using this guide is either via the index on page ??, or via the search
function of your viewer.

Document version and revisions

[yet empty]

Typographical conventions

[yet empty]

Changes with respect to previous versions

[yet empty]

Deltares 1 0of 25

D-Flow Flexible Mesh, Developer’'s Guide

2 of 25 Deltares

2 Source tree architecture of D-Flow FM

2.1 Introduction

This chapter contains a description of the source tree architecture of D-Flow FM, and the
development/build environments that can be used on Windows and Linux.

2.2 Source builds on Windows: Intel, MS Visual Studio and MSBuild
Recommended tools:

< Intel Fortran Composer XE
¢ Microsoft Visual Studio (with MS Visual C++)

Regular development and manual builds are done within Visual Studio. Batch-mode build
on Windows is done via an MSBuild file <dflowfm.proj>. Both depend on the solution file
<dflowfm.sIn> discussed in the next section.

2.2.1 Solution file, templates and project files
The list below summarizes the relevant build configuration files, and which settings are where.

dflowfm.sln
When making changes to this file, make sure to copy them also into the leading template
file scripts/template/dflowfm_template.sln
scripts/template/dflowfm_template.sln
The leading solution template file, that is used to produce the actual solution file rootdir/dflowfm.sln
src/x.£90
The majority of all D-Flow FM source files.
src/dflowfm_kernel/dflowfm_kernel.vfproj
The Visual Fortran project file for the kernel as a static library.

The solution file df lowfm. s1n is based on a template, such that it can be generated for
various combinations of versions of Visual Studio and the Intel Fortran compiler. To generate
the actual solution file, in the root dir run:

python prepare_sln.py

2.3 Source builds on Linux: Intel or GNU, automake and autoconf

[yet empty]

See http://publicwiki.deltares.nl/display/DFLOWFM/Building+on+Linux

Deltares 3of 25

http://publicwiki.deltares.nl/display/DFLOWFM/Building+on+Linux

D-Flow Flexible Mesh, Developer’'s Guide

4 of 25 Deltares

The Basic Model Interface (BMI) for D-Flow FM

Introduction

The Basic Model Interface (BMI) is a set of standardized subroutine interfaces that a simu-
lation engine/model may use to implement its APl. The BMI implementation in D-Flow FM
enables easy access to and interaction with a running D-Flow FM model schematisation from
various host languages, for example Python and C#.

3.2

3.3

3.4

Basic use of the API

[yet empty]

Full APl description
[yet empty]

List of available model variables via BMI

Table 3.1: List of available variables via D-Flow FM’s BMI API.

Variable name Unit | Description Shape
— The MPI communicator for dflowfm | (/ 0 /)

DFM_COMM_DFMWORL (FORTRAN handle)..
iglobal_s N global flow node numbers to help out- | (/ ndx /)

put aggregation later. Should exactly

correspond with the original unparti-

tioned flow node numbers! (as op-

posed to iglobal).
Uorb m/s | orbital velocity. (/ ndx /)
twav S wave period. (/ ndx /)
shx m current position. (/ nshiptxy |/)
shy m current position. (/ nshiptxy |/)
shi m current position. (/ nshiptxy |/)
Zsp m ship depth at flownodes. (/ nshiptxy |/)
shlL m ship size L/2, B/2, D ! for now, fixed | (/ 2 /)

max nr =2.
shB m ship size L/2, B/2, D ! for now, fixed | (/ 2 /)

max nr =2.
shd m ship size L/2, B/2, D | for now, fixed | (/ 2 /)

max nr =2.
stuw N actual thrust force in ship dir. (/ 2 /)
fstuw — thrust setting 0-1. (/ 2 /)

continued on next page
Deltares 50f 25

D-Flow Flexible Mesh, Developer’'s Guide

Table 3.1 — continued from previous page

Variable name Unit | Description Shape
stuwmx N max thrust. (/ 2 /)
roer degree| actual rudder angle. (/2 /)
froer degree| actual rudder setting 0-1. (/ 2 /)
roermx degree| max rudder angle. (/ 2 /)
WX m/s | wind x velocity (m/s) at u point. (/ 1nx /)
wy m/s | wind y velocity (m/s) at u point. (/ 1lnx /)
s0 m waterlevel (m) at start of timestep. (/ ndx /)
sl m waterlevel (m) at end of timestep. (/ ndx /)
a0 m2 storage area at start of timestep. (/ ndx /)
al m2 storage area at end of timestep. (/ ndx /)
vol0 m3 | volume at start of timestep. (/ ndx /)
voll m3 | volume at end of timestep. (/ ndx /)
hs m waterdepth at cell centre =s1-bl(m). | (/ ndx /)
ucx m/s | cell center velocity, global x-dir (m/s). | (/ ndkx /)
ucy m/s | cell center velocity, global y-dir (m/s). | (/ ndkx /)
ucz m/s cell center velocity, global z-dir (m/s). | (/ ndkx /)
sa0 le—3 | salinity (ppt) at start of timestep. (/ ndkx /)
sal le—3 | salinity (ppt) at end of timestep. (/ ndkx /)
satop le—3 | salinity (ppt) help in initialise , deallo- | (/ ndx /)
cated.
tem0 degC' | water temperature at end of timestep. | (/ ndkx /)
teml degC' | water temperature at end of timestep. | (/ ndkx /)
ul m/s | flow velocity (m/s) at end of timestep. | (/ 1lnkx /)
frcu todo | friction coefficient set by initial fields. | (/ 1lnx /)
viusp m2/s | user defined spatial eddy viscosity | (/ 1nx /)
coefficient at u point (m2/s).
diusp m2/s user defined spatial eddy diffusivity | (/ 1nx /)
coefficient at u point (m2/s).
kfs — node code flooding. (/ ndx /)
kfstO — node code flooding. (/ ndx /)
ba m2 bottom area, if < 0 use table in node | (/ ndx /)
type.
continued on next page
6 of 25 Deltares

The Basic Model Interface (BMI) for D-Flow FM

Table 3.1 — continued from previous page

Variable name Unit | Description Shape
bl m bottom level (m) (positive upward). (/ ndx /)
1n — link (2,*) node administration, 1=nd1, | (/ 2, 1lnkx /)
2=nd2 linker en rechter celnr.
lncn — link (2,") corner administration, | (/ 2, 1lnkx /)
1=nod1, 2=nod2 linker en rechter
netnr.
iadv — type of advection for this link. (/ 1nx /)
bob m left and right inside lowerside tube | (/ 2, 1lnx /)
(binnenkant onderkant buis) HEIGHT
values (m) (positive upward).
vort s — 1 | vorticity at netnodes. (/ ndx /)
XZW m centre of gravity. (/ nump /)
yZw m centre of gravity. (/ nump /)
xk — Net node x coordinate. (/ numk /)
vk — Net node y coordinate. (/ numk /)
zk = Net node z coordinate. (/ numk /)
kn — Net links: kn(1,:)=from-idx, | (/ 3, numl /)
kn(2,:)=to-idx, kn(3,:)=net link type
(0/1/2).
zbndld2dl m 1d2d boundary points 1d water level | (/ nbndld2d |/)
at new time level.
zbnd1d2do0 m 1d2d boundary points 1d water level | (/ nbndld2d |/)
at previous time level.
zcrestld2d m 1d2d helper array with crest levels. (/ nbndld2d |/)
edgenumbersld2d m 1d2d helper array with edge num- | (/ nbndld2d |/)
bers.
kbndld2d — 1d2d boundary points index array. (/ 5, nbndld2d /)
width_1d m width 1D SOBEK channel -2D FM | (/ nbndld2d |/)
coupling.
gzeta_1ld2d md3s— | 1d2d output array via BMI for gzetain | (/ nbndld2d |/)
1 1D SOBEK-2D FM coupling.
glat_1d2d m3s— | 1d2d output array via BMI for glat in | (/ nbndld2d |/)
1 1D SOBEK-2D FM coupling.
gtotal_ld2d md3s— | 1d2d output array via BMI for glat in | (/ nbnd1d2d |/)
1 1D SOBEK-2D FM coupling.

Deltares

7 of 25

3.5

D-Flow Flexible Mesh, Developer’'s Guide

Adding new model variables to the BMI interfaces

New model state variables can be made available to the outside world by adding them to
the BMI subroutines. The various BMI-subroutines can be automatically generated using a
Python-script and this is strongly advised. Take the following steps:

1

2

Make the variable available. Make sure your module variable is public (possibly impli-
citly), and pointerable, by adding the target attribute (see below).

Add self-describing documentation to the variable. Behind the variable declaration in
your module, add a correct documentation string in the following format:

double precision, allocatable, target :: sl(:) !< [m] waterlevel at end of

timestep {"shape": ["ndx"]}

(Don’t use newlines in the documentation string.)
The syntax is:

(type), target ::(var)(:,...) !< [(unit)] (some description) {"shape": ["(isize)"%,

Special case for derived type fields Alternatively, when wanting to expose a particular
member field of a user defined type variable as a regular BMI variable, the special prefix
! SBMIEXPORT is available, in combination with the attribute "internal" in the JSON
string.

After the actual variable, put one or more comment lines, each one for a single member
field that you want to expose. For example:

type (stmtype), target :: stmpar <
I< All relevant parameters for sediment-transport-morphology module.

! SBMIEXPORT double precision :: bodsed(:,:) <+
I< [kg m-2] Available sediment in the bed in flow cell center. <
{"location": "face", "shape": ["stmpar%morlyré$settingsénfrac"”", "ndx"],
"internal": "stmparémorlyr%states$bodsed"}

!I'SBMIEXPORT double precision :: dpsed(:) <
I< [m] Sediment thickness in the bed in flow cell center. <
{"location": "face", "shape": ["ndx"], —
"internal": "stmpar$morlyr$%$state$dpsed"}

(Don’t use newlines in the documentation string, the <—s are for readability only.)

The specified internal variable expression will be exposed in the BMI under the specified
name (for example, get_var ("bodsed") willreturn stmpar$morlyr$statesbodsed).
Run the BMI-generator script. Open a DOS-box located at your source scripts dir and

run generate.cmd:

$ cd D:\your_dfm_sourcecode\scripts
$ generate.cmd

Note that the generate. cmd file contains a short list of FORTRAN files, only those will
be scanned for BMI-comments. Add your file if it is not in the list yet.

In case of new modules. In addition to the automatically generated BMI-interface code
parts, some parts require manual editing. Open unstruc_bmi.F90 and find all sub-
routines that contain a statement similar to:

include "bmi_set/get_var (_shape/_rank/_name/_role/_type) .inc"

At the top of subroutines, verify that you module is being made available via a use state-
ment.

8 of 25 Deltares

<o

4 Parallellization

4.1 Introduction

D-Flow FM can run parallel calculations and uses the Message Passing Interface standard
(MPI) for that.

4.2 Code dependencies on MPI

MPI is now a requirement for D-Flow FM, not directly, but via an implicit MPI-depency required
by deltares_common. Siill, the D-Flow FM code contains preprocessing directives to
enable the MPI-specific code:

#ifdef HAVE MPTI
use mpi
#endif

4.3 Partition mesh and MDU files in the command line

A partitioned model can be run interactively on Windows, for the purpose of debugging with
Visual Studio. Running a model as a parallel calculation requires preparing and partitioning
your model input files. Both the mesh and the MDU files need to be partitioned. See Deltares
(2024) for more details on how to implement the partitioning.

There are two types of partitioning the mesh: METIS and manually partition with a user-
specified polygon. The command that uses METIS partitioner reads:

> dflowfm-cli —--partition:ndomains=n <meshfile>

where ndomains=n specifies that n subdomains are to be generated. This command re-
sults in subdomain mesh files <example_000j_net.nc>, j=0,1, ..., n-1. An advanced
command, which enables more options, is:

> dflowfm-cli —--partition:ndomains=n[:method=0]|1][:genpolygon=0]|1][:contigupus=
0]l1] <meshfile>

where the partition method can be chosen via setting method=0 the Recursive Bisection
apporach (default), and method=1 the K-Way approach. We refer to Karypis (2013) for
more details about these two approaches.

Option genpolygon is used to specify whether or not a partition polygon is generated. Such
polygon file stands for the boundaries of subdomains, and can be used to generate subdomain
cell coloring in the initialization stage of a parallel simulation.'By default, no such polygon file

"METIS results in subdomain cell coloring information, i.e. cells that are in the same subdomain have the same
color. This information is important in the initialization stage of a parallel run, where the old D-Flow FM computes
this information using a partition polygon which is generated by the partition command. This method could not be
used for the 1D network where it is difficult to define such a polygon. The new development (default setting) is that
no such polygon is generated or used anymore. The cell coloring information is written to partition mesh files, and
then read for the parallel simulation. In this way, both 1D and 2D networks can be simulated

Deltares 9 of 25

4.4

D-Flow Flexible Mesh, Developer’'s Guide

is generated (genpolygon=0), and the subdomain cell coloring information are written into
the partition mesh files. When genpolygon=1, a polygon file will be generated and the cell
coloring won'’t be written to the resulting mesh files.

Moreover, option cont i guous enforces the contiguous partition when specifying both cont iguous=1
and method=1. (Only the K-Way method enables the contiguous partition.) It is not switched

on by default. Comparing to the previous command, this advanced command additionally

generates a partition polygon file <example_part.pol> when genpolygon=1 is specified.

To manually partition a mesh, a user-specified polygon file <userpols.pol> has to be pro-
vided. The corresponding command reads:

> dflowfm —--partition <meshfile> <userpol.pol>

This generates files the same as before.

There is an efficient way to partition both the mesh and MDU files, by:

> dflowfm-cli --partition:ndomains=n[:method=0]|1][:genpolygon=0]|1][:contigupus=0]|1]
[:icgsolver=i] <mdu-file>

This command reads the name of the mesh file from mdu-£file, and generates n subdo-
main mesh files. Accordingly, it creates n subdomain MDU files where the icgsolver
is set to 1. If the user specifies genpolygon=1, then additionally a partition polygon file
example_part.pol is generated, and the resulting MDU files contains PartitionFile = example_par

Parallel runs and debugging on Windows
Once the model input is complete, a parallel debugging session is started as follows:

1 Start the MPI daemon. This is a one-time operation. Open a DOS-box, make sure the
Intel runtime programs are available and start the SMPD program in debug mode:

$ call "$IFORT14_COMPILER%\bin\ipsxe-comp-vars.bat" intel64 vs2012
$ smpd.exe -d

(Replace TFORT14 in case you've got a different Intel Fortran version.)

2 Start the parallel model run. In another DOS-box, where again the Intel runtime pro-
grams are available, use the mpiexec command to start the parallel run. Do this from
inside the model directory where the MDU-files are located. Specify the full path to the
dflowfm.exe program which you will be debugging:

$ mpiexec.exe -localonly -np 3 D:\your_dfm_sourcecode\bin\x64\Debug\dflowfm.exe
——autostartstop ——pressakey yourmodel.mdu

(Here localonly specify that you are going to run on a local machine and —-np 3
specifies the number of processes, specific for your simulation.) Notice the use of the
—-—pressakey option. This will put the parallel processes on hold so that you first have
the opportunity to attach the debugger in the following step. Also note that you may add
the ——nodisplay option if you don’t need the Interacter GUI during debugging.

10 of 25 Deltares

Parallellization

3 Attach the Visual Studio debugger to the parallel processes. Make sure you are
in the Debug configuration (and x64 platform in the above command, but Win32 is also
possible). Click the menu item DEBUG > Attach to Process. .. In the attach-dialog look
for the df lowfm.exe processes and select all of them that you have just launched in
the previous step (use Ctrl-key + mouse click to select multiple processes).

4 Start the actual debugging. Prepare for debugging as you would do normally, e.g.,
placing breakpoints or watches. Start the actual run but returning to the mpiexec-DOS
box and pressing the Enter-key once. All processess will then start running. Return to
Visual Studio and start debugging.

4.5 Some related development
¢ When partition a mesh, the cell information (i.e. netcell%nod and netcell%lin in the code)
of each subdomain is written to the subdomain mesh files, so that in the parallel run, the
expensive step of finding cell information is skipped (i.e. skip subroutines findcells and
find1dcells). Moreover, if there is no cell information in the mesh file, the step of finding
cells is automatically switched on. This also works in sequential run.
¢ Inthe command line, we can save net file with cell information, by option convertnetcells.

Deltares 11 of 25

D-Flow Flexible Mesh, Developer’'s Guide

12 of 25 Deltares

5.1

5.2

5.3

5.4

5.4.1

5.4.2

5.4.3

Deployment of D-Flow FM

Introduction

This chapter contains descriptions of the various ways how D-Flow FM can be installed on
various platforms, and how the source and binary distributions can be built.

TeamCity specifics

[yet empty]

Deployment on Windows platforms

[yet empty]

Deployment on Linux platforms

Source distribution for Linux

D-Flow FM can be shipped as a source distribution df lowfm-1.1.xxx.tar.gz. The
target audience for this format is users that are no developers (hence, no SVN-access),
but who want to build on their own specific system with specific libraries or compilers. The
goal is that they do not need any autotools packages per se (because configure and all
Makefile.insareinthe .tar.gz. This works well on CentOS, but on Ubuntu sometimes
Automake and/or Libtool is still required on the user’s machine.

TODO 5.1: sort out Ubuntu issues

Subversion distribution for Linux

When building from an SVN working copy, run . /autogen. sh once. Next, follow the normal
source build steps. Make sure recent enough versions of automake, autoconf and libtool are
in your path (e.g., runmodule load automake, etc.)

Binary distribution for Linux

Binary distributions including third-party dependencies has its drawbacks, and RPM packages
may be preferred, but sometimes it is necessary. D-Flow FM is then shipped with its 1ilb/
directory filled with all known dependency libraries (. sos).

Dependencies are listed via:

ldd dflowfm

Deltares 13 of 25

TODO

D-Flow Flexible Mesh, Developer’'s Guide

5.4.3.1 Known possible issues with binary distributions
1 Issue: error ‘cannot open shared object file’.

dflowfm: error while loading shared libraries: 1ibXXX.so: cannot open
shared object file: No such file or directory

Answer
Not all required libraries can be found, make sure the . so isinthe LD_LIBRARY_PATH
(either export it, or use module load).

2 lIssue: opal help file error.

couldn't open the help file:
/opt/openmpi/1.8.1_intel_14.0.3/share/openmpi/help-opal-runtime.txt:
No such file of directory. Sorry!

Answer

This error may occur when D-Flow FM call mpi_init. OpenMPI has the problem that

the binary libraries contain a hard path to its help files, e.g., as it was built on our systems.

No doubt, the user uses different locations, so we should not ship OpenMPI ourselves.

Solution: advise user RPM/debpkg/self-built OpenMPI. Or fallback: OpenMPI offers envi-

ronment variable OPAL_PREFIX,wecouldsetittodflowfm—cli-location/dflowfm/somedir,
but then we would need to ship the OpenMPI help files. Undesirable.

3 lIssue: double -1 -1 error

TODO TODO 5.2: include actual error here

Answer

Caused by a combination of the MPI compiler and some version of libtool. A call to
mpif90 —gen-dep produces whitespace between -1 and the libname, which libtool
parses incorrectly. More info on https:/issuetracker.deltares.nl/browse/UNST-732

14 of 25 Deltares

https://issuetracker.deltares.nl/browse/UNST-732

6 Miscelaneous stuff

6.1 Debugging dflowfm.dll running under Delft3D Flexible Mesh Suite or D-HYDRO Suite

In many cases it is desirable to be able to debug dflowfm.dIl from the Visual Studio IDE, as it
is running under Delft3D Flexible Mesh Suite or D-HYDRO Suite. There are cases in which
the dflowm.dll behaves differently from dflowfm.exe or dflowfm-cli.exe and cases in which one
would like to see how Delft3D Flexible Mesh Suite or D-HYDRO Suite is calling API functions.
The procedure is straightforward:

¢ In the Visual Studio solution, set dflowfm_dlIl_2012 as the startup project.
¢ Modify the properties of dflowfm_dll_2012 as follows:
General -> Output Directory :
\%DSPATH%\plugins\DeltaShell.Plugins.FMSuite.FlowFM\dflowfm_kernel\x64
Debugging -> Command :
%DSPATH%\bin\DeltaShell.Gui.exe
Debugging -> Working Directory :
%DSPATH%\bin

Shift-F5 Go !l

Due to the project’s new settings, dflowm.dll and its .pdb will be rebuilt in the path where
the Delft3D Flexible Mesh Suite or D-HYDRO Suite expects them.

Ignore Visual Studio’s complaints about missing symbols by pressing 'YES’

Be patient while Visual Studio attempts to load all kinds of irrelevant symbols....

Delft3D Flexible Mesh Suite or D-HYDRO Suite will fire up.

Either load an existent Delft3D Flexible Mesh Suite or D-HYDRO Suite project or create a
new one while importing a dflowfm model.

Set "Use RPC’ to FALSE for the dflowfm model (right-clicking in the project tree left on
the screen on the dflowfm model and select ’Properties’, opens the properties pane on
the right.)

Otherwise, dflowfm is run as a remote instance, which is inaccessible to Visual Studio for
debugging.

¢ Set breakpoints in Visual Studio

¢ Run the model in the Delft3D Flexible Mesh Suite or D-HYDRO Suite, which will hit the
breakpoints

(R

C OO0

<

Deltares 15 of 25

D-Flow Flexible Mesh, Developer’'s Guide

16 of 25 Deltares

7

71

7.2

7.3

Test bench

Introduction

The test bench of DFLOW-FM is an important tool to keep all parts working as aspected, while
developing new features, fixing bugs or reorganizing the code.

The first section describes where to find the scripts of the test bench, the test cases, the
location of the website to monitor the results. The second section describes how to add a new
test case.

The test bench runs automatically: if somethings changes in the source code of DFLOW-FM,
or in the test scripts or test cases, new executables are build, and tests are run, and the tests
results are compared with reference results.

The test scripts are also used for other projects than D-Flow FM (e.g. Delft3D-FLOW and
D-Water Quality), and works on Windows and Linux.

Location of all parts of the test bench

TeamCity (see https://www.jetbrains.com/teamcity) is used as the test bench environment.
The overall project page for DFlowFM with TeamCity is located at https://build.deltares.nl/
project.html?projectld=DFlowFlexibleMesh&tab=projectOverview . On this page you will find
three subprojects: 3Di-related, Build FM distributions and Testbenches FM.

The svn repository of the test bench scripts is:
https://repos.deltares.nl/repos/DSCTestbench/scripts/trunk.

The test bench itself is a python project with as the main file: TestBench.py. As a default
within Deltares, we use Anaconda (https://anaconda.org/) as the python environment.

The test cases itself are located on two locations: the input of the cases are at: https:/repos.
deltares.nl/repos/DSCTestbench/cases/trunk/e02_dflowfm, the output to which we compare
our results (references) are at: https://repos.deltares.nl/repos/DSCTestbench/references/trunk.

How to add a new test case

We assume that the test case input is already in the right location in the repository, if not, add
the test case to it.

To add test cases, you should first choose the configuration where your test case belongs to.
There are currently about 60 configurations. The most important configurations for DFLOW-
FM are:

¢ dflowfm_win64.xml

¢ dflowfm_Inx64_single.xml
¢ dflowfm_Inx64_parallel.xml
<& dflowfm_3dcases_win64.xml

As the extension suggests, the configuration is an xml file. The xml file is defined by its xsd:
https://repos.deltares.nl/repos/DSCTestbench/scripts/configs/deltares Testbench_v3-2.00.xsd

Deltares 17 of 25

https://www.jetbrains.com/teamcity
https://build.deltares.nl/project.html?projectId=DFlowFlexibleMesh&tab=projectOverview
https://build.deltares.nl/project.html?projectId=DFlowFlexibleMesh&tab=projectOverview
https://repos.deltares.nl/repos/DSCTestbench/scripts/trunk
https://anaconda.org/
https://repos.deltares.nl/repos/DSCTestbench/cases/trunk/e02_dflowfm
https://repos.deltares.nl/repos/DSCTestbench/cases/trunk/e02_dflowfm
https://repos.deltares.nl/repos/DSCTestbench/references/trunk
https://repos.deltares.nl/repos/DSCTestbench/scripts/configs/deltaresTestbench_v3-2.00.xsd

D-Flow Flexible Mesh, Developer’'s Guide

Each test case is defined within the tags <testCase>. An example is:

<testCase name="e02_f1l4_c060_sill_ free_griddir" ref="dflowfm_default">
<path>e02_dflowfm/fl4_parallel/c060_sill_free_griddirection</path>

<programs>
<program ref="DFlowFM">
<arguments>

<argument>weirfree.mdu</argument>
<argument>--autostartstop</argument>
<argument>--nodisplay</argument>

</arguments>
</program>
</programs>
<maxRunTime>15000.0</maxRunTime>
<checks>
<file name="dflowfmoutput/pillar_small_0000_his.nc" type="netCDF">
<parameters>

<parameter name="waterlevel" toleranceAbsolute="0.00001" />
<parameter name="x_velocity" toleranceAbsolute="0.00001" />
<parameter name="y_velocity" toleranceAbsolute="0.00001" />
</parameters>
</file>
</checks>
</testCase>

Most settings can be copied from this example. Next settings must be altered:

tag description
name identification for test case
path relative path to input of test case

argument | name of the mdu-file

file name | path to output path

type type of output file

parameter | variable to compare with selected tolerance (absolute or relative)

Once the test case is included in the configuration file, the test script can be used to run this
case to produce references.

python —--config dflowfm_ 1nx64_parallel.xml —--filter f14_c060 -r

The option -r is for reference run.

If everything goes right, the reference value can be found in the directory:
data/references/trunk/<platform>/<testset1>/<testset2>/<name> .

If everything looks fine (which can be checked, locally, to run the testscript with the -c option,
for comparison), these references can be submitted to the repository.

Finally check in the changes to the configuration file.

Repeat the steps for the other configurations.

18 of 25 Deltares

Test bench

Deltares, 2016. “BIBTEX key with no entry, needed if no citations are made in the document.”
Deltares, 2024. D-Flow FM Hydro- and Morphodynamics User Manual. Deltares, 1.1.124 ed.

Karypis, G., 2013. METIS - A Software Package for Partitioning Unstructured Graph, Parti-
tioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices, Version 5.1.0.
Tech. rep., Department of Computer Science and Engineering, University of Minnesota.

Sleutelwoord

Deltares 19 of 25

D-Flow Flexible Mesh, Developer’'s Guide

20 of 25 Deltares

Index
sleutelwoord, 19

Deltares 21 of 25

D-Flow Flexible Mesh, Developer’'s Guide

22 of 25 Deltares

Deltares systems

PO Box 177 +37(0)88 335 81 88
2600 MH Delft software@deltares.nl
Boussinesqweg 1 www.deltares.nl/software
2629 HV Delft

The Netherlands

	List of Tables
	List of Figures
	List of To Do's
	1 A guide to this developer's guide
	1.1 Introduction
	1.2 Document version and revisions
	1.3 Typographical conventions
	1.4 Changes with respect to previous versions

	2 Source tree architecture of D-Flow FM
	2.1 Introduction
	2.2 Source builds on Windows: Intel, MS Visual Studio and MSBuild
	2.2.1 Solution file, templates and project files

	2.3 Source builds on Linux: Intel or GNU, automake and autoconf

	3 The Basic Model Interface (BMI) for D-Flow FM
	3.1 Introduction
	3.2 Basic use of the API
	3.3 Full API description
	3.4 List of available model variables via BMI
	3.5 Adding new model variables to the BMI interfaces

	4 Parallellization
	4.1 Introduction
	4.2 Code dependencies on MPI
	4.3 Partition mesh and MDU files in the command line
	4.4 Parallel runs and debugging on Windows
	4.5 Some related development

	5 Deployment of D-Flow FM
	5.1 Introduction
	5.2 TeamCity specifics
	5.3 Deployment on Windows platforms
	5.4 Deployment on Linux platforms
	5.4.1 Source distribution for Linux
	5.4.2 Subversion distribution for Linux
	5.4.3 Binary distribution for Linux
	5.4.3.1 Known possible issues with binary distributions

	6 Miscelaneous stuff
	6.1 Debugging dflowfm.dll running under Delft3D Flexible Mesh Suite or D-HYDRO Suite

	7 Test bench
	7.1 Introduction
	7.2 Location of all parts of the test bench
	7.3 How to add a new test case

	Index

